TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Nodule detection and generation on chest X-rays: NODE21 challenge
 
Options

Nodule detection and generation on chest X-rays: NODE21 challenge

Publikationstyp
Journal Article
Date Issued
2024-03-26
Sprache
English
Author(s)
Sogancioglu, Ecem  
Ginneken, Bram van  
Behrendt, Finn  
Medizintechnische und Intelligente Systeme E-1  
Bengs, Marcel  
Medizintechnische und Intelligente Systeme E-1  
Schlaefer, Alexander  
Medizintechnische und Intelligente Systeme E-1  
Radu, Miron
Xu, Di  
Sheng, Ke  
Scalzo, Fabien  
Marcus, Eric  
Papa, Samuele  
Teuwen, Jonas  
Scholten, Ernst Th.
Schalekamp, Steven  
Hendrix, Nils  
Jacobs, Colin  
Hendrix, Ward  
Sánchez, Clara I.  
Murphy, Keelin  
TORE-URI
https://hdl.handle.net/11420/48778
Journal
IEEE transactions on medical imaging  
Volume
43
Issue
8
Start Page
2839
End Page
2853
Citation
IEEE Transactions on Medical Imaging 43 (8): 2839-2853 (2024)
Publisher DOI
10.1109/TMI.2024.3382042
Scopus ID
2-s2.0-85189352397
Publisher
IEEE
Pulmonary nodules may be an early manifestation of lung cancer, the leading cause of cancer-related deaths among both men and women. Numerous studies have established that deep learning methods can yield high-performance levels in the detection of lung nodules in chest X-rays. However, the lack of gold-standard public datasets slows down the progression of the research and prevents benchmarking of methods for this task. To address this, we organized a public research challenge, NODE21, aimed at the detection and generation of lung nodules in chest X-rays. While the detection track assesses state-of-the-art nodule detection systems, the generation track determines the utility of nodule generation algorithms to augment training data and hence improve the performance of the detection systems. This paper summarizes the results of the NODE21 challenge and performs extensive additional experiments to examine the impact of the synthetically generated nodule training images on the detection algorithm performance.
Subjects
Chest radiography
deep learning
nodule detection
MLE@TUHH
DDC Class
610: Medicine, Health
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback