Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Contributions of nitrogen deposition and forest regrowth to terrestrial carbon uptake

MPG-Autoren
/persons/resource/persons62356

Churkina,  Galina
Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62590

Trusilova,  Kristina
Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62593

Vetter,  Mona
Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

BGC1072.pdf
(Verlagsversion), 279KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Churkina, G., Trusilova, K., Vetter, M., & Dentener, F. (2007). Contributions of nitrogen deposition and forest regrowth to terrestrial carbon uptake. Carbon Balance and Management, 2: 5. doi:10.1186/1750-0680-2-5.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-D4E1-F
Zusammenfassung
BACKGROUND:The amount of reactive nitrogen deposited on land has doubled globally and become at least five-times higher in Europe, Eastern United States, and South East Asia since 1860 mostly because of increases in fertilizer production and fossil fuel burning. Because vegetation growth in the Northern Hemisphere is typically nitrogen-limited, increased nitrogen deposition could have an attenuating effect on rising atmospheric CO2 by stimulating the vegetation productivity and accumulation of carbon in biomass.RESULTS:This study shows that elevated nitrogen deposition would not significantly enhance land carbon uptake unless we consider its effects on re-growing forests. Our results suggest that nitrogen enriched land ecosystems sequestered 0.62-2.33 PgC in the 1980s and 0.75-2.21 PgC in the 1990s depending on the proportion and age of re-growing forests. During these two decades land ecosystems are estimated to have absorbed 13-41% of carbon emitted by fossil fuel burning.CONCLUSION:Although land ecosystems and especially forests with lifted nitrogen limitations have the potential to decelerate the rise of CO2 concentrations in the atmosphere, the effect is only significant over a limited period of time. The carbon uptake associated with forest re-growth and amplified by high nitrogen deposition will decrease as soon as the forests reach maturity. Therefore, assessments relying on carbon stored on land from enhanced atmospheric nitrogen deposition to balance fossil fuel emissions may be inaccurate.