日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

会議論文

Superposition modulo a Shostak Theory

MPS-Authors
/persons/resource/persons44474

Ganzinger,  Harald
Programming Logics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44621

Hillenbrand,  Thomas
International Max Planck Research School, MPI for Informatics, Max Planck Society;
Automation of Logic, MPI for Informatics, Max Planck Society;
Programming Logics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45689

Waldmann,  Uwe       
Automation of Logic, MPI for Informatics, Max Planck Society;
Programming Logics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44050

Baader,  Franz
Programming Logics, MPI for Informatics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Ganzinger, H., Hillenbrand, T., & Waldmann, U. (2003). Superposition modulo a Shostak Theory. In Automated Deduction, CADE-19: 19th International Conference on Automated Deduction (pp. 182-196). Berlin, Germany: Springer.


引用: https://hdl.handle.net/11858/00-001M-0000-000F-2E43-A
要旨
We investigate superposition modulo a Shostak theory $T$ in order to facilitate reasoning in the amalgamation of $T$ and a free theory~$F$. % Free operators occur naturally e.\,g.\ in program verification problems when abstracting over subroutines. If their behaviour in addition can be specified axiomatically, much more of the program semantics can be captured. % Combining the Shostak-style components for deciding the clausal validity problem with the ordering and saturation techniques developed for equational reasoning, we derive a refutationally complete calculus on mixed ground clauses which result for example from CNF transforming arbitrary universally quantified formulae. % The calculus works modulo a Shostak theory in the sense that it operates on canonizer normalforms. For the Shostak solvers that we study, coherence comes for free: no coherence pairs need to be considered.