日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

会議論文

Two-Layer Planarization in Graph Drawing

MPS-Authors
/persons/resource/persons45092

Mutzel,  Petra
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons45729

Weiskircher,  René
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Mutzel, P., & Weiskircher, R. (1998). Two-Layer Planarization in Graph Drawing. In K.-Y., Chwa, & O. H., Ibarra (Eds.), Proceedings of the 9th International Symposium on Algorithms and Computation (ISAAC-98) (pp. 69-78). Berlin, Germany: Springer.


引用: https://hdl.handle.net/11858/00-001M-0000-000F-3805-C
要旨
We study the \tlpp s that have applications in Automatic Graph Drawing. We are searching for a two-layer planar subgraph of maximum weight in a given two-layer graph. Depending on the number of layers in which the vertices can be permuted freely, that is, zero, one or two, different versions of the problems arise. The latter problem was already investigated in \cite{Mut97} using polyhedral combinatorics. Here, we study the remaining two cases and the relationships between the associated polytopes. In particular, we investigate the polytope $\calp _1$ associated with the two-layer {\em planarization} problem with one fixed layer. We provide an overview on the relationships between $\calp _1$ and the polytope $\calq _1$ associated with the two-layer {\em crossing minimization} problem with one fixed layer, the linear ordering polytope, the \tlpp\ with zero and two layers fixed. We will see that all facet-defining inequalities in $\calq _1$ are also facet-defining for $\calp _1$. Furthermore, we give some new classes of facet-defining inequalities and show how the separation problems can be solved. First computational results are presented using a branch-and-cut algorithm. For the case when both layers are fixed, the \tlpp\ can be solved in polynomial time by a transformation to the heaviest increasing subsequence problem. Moreover, we give a complete description of the associated polytope $\calp _2$, which is useful in our branch-and-cut algorithm for the one-layer fixed case.