Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Self-organized nanostructures in surface chemical reactions: Mechanisms and mesoscopic modeling

MPG-Autoren
/persons/resource/persons21629

Hildebrand,  Michael
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hildebrand, M. (2002). Self-organized nanostructures in surface chemical reactions: Mechanisms and mesoscopic modeling. Chaos, 12(1), 144-156. doi:10.1063/1.1448807.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-15DB-1
Zusammenfassung
Nanoscale patterns can form in reactive adsorbates on catalytic surfaces as a result of attractive lateral interactions. These structures can be described within a mesoscopic theory that is derived by coarse graining the microscopic master equation thus providing a link between microscopic lattice models and reaction-diffusion equations. Such mesoscopic models allow to systematically investigate mechanisms responsible for the formation of nanoscale nonequilibrium patterns in reactive condensed matter. We have found that stationary and traveling nanostructures may result from the interplay of the attractive lateral interactions and nonequilibrium reactions. Besides reviewing these results, a detailed investigation of a single reactive adsorbate in the presence of attractive lateral interactions and global coupling through the gas phase is presented. Finally, it is outlined how a mesoscopic theory should be constructed for a particular scanning tunneling microscopy experiment [the oxidation of hydrogen on a Pt(111) surface] in order to overcome the failure of a corresponding reaction-diffusion model to quantitatively reproduce the experiments.