Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Theoretical News from Neutrinoless Double Beta Decay

MPG-Autoren
/persons/resource/persons37609

Dürr,  Michael
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

thesis-Duerr.pdf
(beliebiger Volltext), 998KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dürr, M. (2010). Theoretical News from Neutrinoless Double Beta Decay. Diploma Thesis, Universität Ulm, Ulm.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-7C9B-1
Zusammenfassung
Neutrinoless double beta decay is a very sensitive experimental probe for physics beyond the Standard Model. In fact, this process is the only known possibility to ascertain in the foreseeable future whether the neutrino is a Dirac or a Majorana particle. Most theoretical results on this subject, however, have been known for many years. In the advent of the next generation of experiments, it is worthwhile to reexamine old results and provide some new theoretical contributions. This thesis deals with various topics related to neutrinoless double beta decay. In particular, we focus on a discussion of the famous Schechter–Valle (or Black Box) theorem, as well as on a realization of neutrinoless double beta decay in universal extra dimensions, which has not been considered in the literature so far. We find that the Schechter–Valle theorem, although valid, is of merely academic interest, as it generates a neutrino mass which is many orders of magnitude smaller than the one expected. Concerning universal extra dimensions, we are able to give a new bound on their size, which is slightly weaker but complementary to the existing constraints from electroweak precision data. Next generation experiments are expected to improve upon the bounds we obtain.