Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

On the relationship between acetone and carbon monoxide in different air masses

MPG-Autoren
/persons/resource/persons30400

de Reus,  M.
Frank Arnold - Atmospheric Trace Gases and Ions, Research Groups, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30473

Fischer,  H.
Frank Arnold - Atmospheric Trace Gases and Ions, Research Groups, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30261

Arnold,  Frank
Frank Arnold - Atmospheric Trace Gases and Ions, Research Groups, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30613

Holzinger,  R.
Frank Arnold - Atmospheric Trace Gases and Ions, Research Groups, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31180

Williams,  J.
Elisa Resconi - Emmy Noether Junior Research Group, Junior Research Groups, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

de Reus, M., Fischer, H., Arnold, F., de Gouw, J., Holzinger, R., Warneke, C., et al. (2003). On the relationship between acetone and carbon monoxide in different air masses. Atmospheric Chemistry and Physics, 3, 1709-1723. Retrieved from www.atmos-chem-phys.org/acp/3/1709/.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-8DE2-7
Zusammenfassung
Carbon monoxide and acetone measurements are presented for five aircraft measurement campaigns at mid-latitudes, polar and tropical regions in the northern hemisphere. Throughout all campaigns, free tropospheric air masses, which were influenced by anthropogenic emissions, showed a similar linear relation between acetone and CO, with a slope of 21-25 pptv acetone/ppbv CO. Measurements in the anthropogenically influenced marine boundary layer revealed a slope of 13-16 pptv acetone/ppbv CO. The different slopes observed in the marine boundary layer and the free troposphere indicate that acetone is emitted by the ocean in relatively clean air masses and taken up by the ocean in polluted air masses. In the lowermost stratosphere, a good correlation between acetone and CO was observed as well, however, with a much smaller slope (~5 pptv acetone/ppbv CO) compared to the troposphere. This is caused by the longer photochemical lifetime of CO compared to acetone in the lower stratosphere, due to the increasing photolytic loss of acetone and the decreasing OH concentration with altitude. No significant correlation between acetone and CO was observed over the tropical rain forest due to the large direct and indirect biogenic emissions of acetone. The common slopes of the linear acetone-CO relation in various layers of the atmosphere, during five field experiments, makes them useful for model calculations. Often a single observation of the acetone-CO correlation, determined from stratospheric measurements, has been used in box model applications. This study shows that different slopes have to be considered for marine boundary layer, free tropospheric and stratospheric air masses, and that the acetone-CO relation cannot be used for air masses which are strongly influenced by biogenic emissions.