Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Accurate evolutions of inspiralling neutron-star binaries: assessment of the truncation error

MPG-Autoren
/persons/resource/persons20657

Giacomazzo,  Bruno
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons20670

Rezzolla,  Luciano
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

0901.4955v1.pdf
(Preprint), 332KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Baiotti, L., Giacomazzo, B., & Rezzolla, L. (2009). Accurate evolutions of inspiralling neutron-star binaries: assessment of the truncation error. Nrda. Retrieved from http://arxiv.org/abs/0901.4955.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-45DE-6
Zusammenfassung
We have recently presented an investigation in full general relativity of the dynamics and gravitational-wave emission from binary neutron stars which inspiral and merge, producing a black hole surrounded by a torus (see arXiv:0804.0594). We here discuss in more detail the convergence properties of the results presented in arXiv:0804.0594 and, in particular, the deterioration of the convergence rate at the merger and during the survival of the merged object, when strong shocks are formed and turbulence develops. We also show that physically reasonable and numerically convergent results obtained at low-resolution suffer however from large truncation errors and hence are of little physical use. We summarize our findings in an "error budget", which includes the different sources of possible inaccuracies we have investigated and provides a first quantitative assessment of the precision in the modelling of compact fluid binaries.