Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Gravitational waves from coalescing massive black holes in young dense clusters

MPG-Autoren
/persons/resource/persons20654

Amaro-Seoane,  Pau
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

eDoc318872arxiv.pdf
(Preprint), 408KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Amaro-Seoane, P. (2006). Gravitational waves from coalescing massive black holes in young dense clusters. In S. M. Merkowitz, & J. C. Livas (Eds.), Laser Interferometer Space Antenna: 6th International LISA Symposium (pp. 250-256). Berlin u.a: Springer.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-4CC5-F
Zusammenfassung
HST observations reveal that young massive star clusters form in gas-rich environments like the Antenn{\ae} galaxy which will merge in collisional processes to form larger structures. These clusters amalgamate and if some of these clusters harbour a massive black hole in their centres, they can become a strong source of gravitational waves when they coalesce. In order to understand the dynamical processes that are into play in such a scenario, one has to carefully study the evolution of the merger of two of such young massive star clusters and more specifically their respective massive black holes. This will be a promising source of gravitational waves for both, LISA and the proposed Big Bang Observer (BBO), whose first purpose is to search for an inflation-generated gravitational waves background in the frequency range of $10^{-1}-1$ Hz. We used high-resolution direct summation $N-$body simulations to study the orbital evolution of two colliding globular clusters with different initial conditions. Even if the final eccentricity is almost negligible when entering the bandwidth, it will suffice to provide us with detailed information about these astrophysical events.