日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Enhanced thermoelectric properties of the n-type Magnéli phase WO2.90: reduced thermal conductivity through microstructure engineering

MPS-Authors
/persons/resource/persons126556

Burkhardt,  Ulrich
Ulrich Burkhardt, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126891

Veremchuk,  Igor
Igor Veremchuk, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126626

Grin,  Yuri
Juri Grin, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Kieslich, G., Burkhardt, U., Birkel, C. S., Veremchuk, I., Douglas, J. E., Gaultois, M. W., Lieberwirth, I., Seshadri, R., Stucky, G. D., Grin, Y., & Tremel, W. (2014). Enhanced thermoelectric properties of the n-type Magnéli phase WO2.90: reduced thermal conductivity through microstructure engineering. Journal of Materials Chemistry A, 2(33), 13492-13497. doi:10.1039/c4ta01395f.


引用: https://hdl.handle.net/11858/00-001M-0000-0023-CE86-2
要旨
The thermoelectric properties of the Magneli phase WO2.90 were investigated, with special attention to how the thermoelectric performance can be altered by changing its microstructure. Spark plasma sintering (SPS) allowed the direct preparation of large amounts of consolidated material. Adding Ta2O5 to the reaction mixture lead to the formation of solid solutions W1-xTaxO2 90 via a concurrent reaction between WO3 and Ta2O5 during the SPS treatment. In addition, micron-sized inclusions containing tungsten surrounded by WOx embedded in a WO2.90 matrix were formed, which act as additional scattering centers. As a result, the thermal conductivity of the Ta-containing samples was reduced by approximate to 30% over the temperature range from 300 to 1100 K while the electronic properties remained unaffected, which in turn enhanced the thermoelectric performance and led to a relatively high zT value of 0.15 at 1100 K for n-type metal oxides.