Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Dissociative Photoionization of Molecular Hydrogen : A Joint Experimental and Theoretical Study of the Electron-Electron Correlations induced by XUV Photoionization and Nuclear Dynamics on IR-Laser Dressed Transition States

MPG-Autoren
/persons/resource/persons30470

Fischer,  Andreas
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

fischer.pdf
(Verlagsversion), 24MB

fischer.pdf
(beliebiger Volltext), 24MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Fischer, A. (2015). Dissociative Photoionization of Molecular Hydrogen: A Joint Experimental and Theoretical Study of the Electron-Electron Correlations induced by XUV Photoionization and Nuclear Dynamics on IR-Laser Dressed Transition States. PhD Thesis, Ruprecht-Karls-Universität, Heidelberg.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0024-9CA0-D
Zusammenfassung
In this thesis, the dissociative single-ionization of molecular hydrogen is investigated in a kinematically complete experiment by employing extreme ultraviolet attosecond pulse trains and infrared femtosecond laser pulses. Induced by the absorption of a single XUV photon, a pronounced energy-dependent asymmetry of the relative emission direction of the photoelectron and the ion is observed. The asymmetry pattern is explained in terms of an interference of two ionization pathways involving a doubly-excited state. This interpretation is validated by a semi-classical model which only takes the nuclear motion into account. Using this model and the observed asymmetry, it is furthermore possible to disentangle the two dissociation pathways which allows for the determination of the autoionization lifetime of the contributing doubly-excited state as a function of the internuclear distance. Moreover, using a pump{probe experiment the dissociation dynamics of molecular hydrogen is investigated. A time-delay dependent momentum distribution of the fragments is observed. With a combined quantum mechanical and semi-classical approach the mechanism giving rise to the observed time-dependence is identified in terms of an intuitive elevator mechanism.