English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A vertebrate-conserved cis-regulatory module for targeted expression in the main hypothalamic regulatory region for the stress response

MPS-Authors
/persons/resource/persons118960

Gutierrez-Triana,  José Arturo
Max Planck Research Group Developmental Genetics of the nervous system (Soojin Ryu), Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons123057

Herget,  Ulrich
Max Planck Research Group Developmental Genetics of the nervous system (Soojin Ryu), Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons146444

Lichtner,  Patrick
Max Planck Research Group Developmental Genetics of the nervous system (Soojin Ryu), Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons123054

Castillo Ramirez,  Luis Alberto
Max Planck Research Group Developmental Genetics of the nervous system (Soojin Ryu), Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95051

Ryu,  Soojin
Max Planck Research Group Developmental Genetics of the nervous system (Soojin Ryu), Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gutierrez-Triana, J. A., Herget, U., Lichtner, P., Castillo Ramirez, L. A., & Ryu, S. (2014). A vertebrate-conserved cis-regulatory module for targeted expression in the main hypothalamic regulatory region for the stress response. BMC Developmental Biology, 14: 41. doi:10.1186/s12861-014-0041-x.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0026-B4E9-1
Abstract
BackgroundThe homeodomain transcription factor orthopedia (Otp) is an evolutionarily conserved regulator of neuronal fates. In vertebrates, Otp is necessary for the proper development of different regions of the brain and is required in the diencephalon to specify several hypothalamic cell types, including the cells that control the stress response. To understand how this widely expressed transcription factor accomplishes hypothalamus-specific functions, we performed a comprehensive screening of otp cis-regulatory regions in zebrafish.ResultsHere, we report the identification of an evolutionarily conserved vertebrate enhancer module with activity in a restricted area of the forebrain, which includes the region of the hypothalamus that controls the stress response. This region includes neurosecretory cells producing Corticotropin-releasing hormone (Crh), Oxytocin (Oxt) and Arginine vasopressin (Avp), which are key components of the stress axis. Lastly, expression of the bacterial nitroreductase gene under this specific enhancer allowed pharmacological attenuation of the stress response in zebrafish larvae.ConclusionVertebrates share many cellular and molecular components of the stress response and our work identified a striking conservation at the cis-regulatory level of a key hypothalamic developmental gene. In addition, this enhancer provides a useful tool to manipulate and visualize stress-regulatory hypothalamic cells in vivo with the long-term goal of understanding the ontogeny of the stress axis in vertebrates