Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

On the Contribution of autoionizing states to XUV radiation-induced double ionization of nitrous oxide (N2O)

MPG-Autoren
/persons/resource/persons31009

Schönwald,  Michael
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Dissertation_MSchoenwald.pdf
(Verlagsversion), 8MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schönwald, M. (2015). On the Contribution of autoionizing states to XUV radiation-induced double ionization of nitrous oxide (N2O). PhD Thesis, Johann Wolfgang Goethe-Universität, Frankfurt am Main.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0027-AF68-E
Zusammenfassung
The implementation of pump-probe experiments with ultrashort laser pulses enables the study of dynamical processes in atoms or molecules, which may provide a deeper inside in their physical origin. The application of this method to systems as nitrous oxide, which is not only a simple example for polyatomic molecules but which also plays a crucial role in the greenhouse effect, promises interesting and beneficial findings. This thesis presents, on the one hand, the technical extension of an existing experimental setup for high-harmonic generation (HHG) and ultra-fast laser physics by an extreme ultraviolet (XUV) spectrometer for the in-situ observation of the harmonic spectrum during ongoing measurements. The present setup enables the production of short laser pulse trains in the XUV spectral range with durations of a few hundred attoseconds (1 as = 10−18 s) via HHG and supports to perform XUV-IR pump-probe experiments using the infrared (IR) driving field with durations of a few femtoseconds. Moreover, a reaction microscope is implemented, which enables the coincident detection of several charged particles emerging from an ionization or dissociation process and to reconstruct their full 3-D-momentum vectors. With this technique it is possible to perform time-resolved momentum spectroscopy of few-particle quantum systems. Here, the design and the calibration of the XUV spectrometer is presented as well as a first application to the analysis of experimental data by providing information on the produced photon energies. On the other hand, the results of an XUV-pump IR-probe measurement on nitrous oxide (N2O) are discussed. With the broad harmonic spectrum (∼ 17 − 45 eV) it is possible to address several states of the singly and doubly ionized cation. One reaction channel is the single ionization into a stable state of N2O+. Here, the coincidently measured photoelectron energies allow the observation of sidebands, which served to estimate the pulse durations of the involved XUV pulse trains as well as of the fundamental IR pulses. Additionally, single ionization of nitrous oxide can lead to a dissociation into a charged and a neutral fragment. The four respective dissociation channels are compared by presenting their branching ratios, kinetic energy release (KER) distributions and their dependencies on the time delay between pump and probe pulse. In the production of the dication, there are two competitive processes: direct double ionization considering photon energies above the double-ionization threshold, and autoionization of singly ionized and excited molecules in the case of photon energies near the double-ionization threshold. In both cases, the ionization leads to a Coulomb explosion into two charged fragments, where the N − N bond or the N − O bond may dissociate. The influence of the IR-probe field on the ionization yield and the KER was investigated for both dissociation channels and compared. In addition, the corresponding photoelectron energy spectra are presented, which show indications for autoionizing states being involved, and their dependence on the delay and the KER of the respective ions is analyzed.