Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Nitrogen-doped porous carbon nanosheets derived from poly(ionic liquid)s : hierarchical pore structures for efficient CO2 capture and dye removal

MPG-Autoren
/persons/resource/persons192359

Gong,  Jiang
Jiayin Yuan, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons191859

Lin,  Huijuan
Jiayin Yuan, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons1057

Antonietti,  Markus
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons122058

Yuan,  Jiayin
Jiayin Yuan, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2263209.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)

2263209_supp.pdf
(Ergänzendes Material), 880KB

Zitation

Gong, J., Lin, H., Antonietti, M., & Yuan, J. (2016). Nitrogen-doped porous carbon nanosheets derived from poly(ionic liquid)s: hierarchical pore structures for efficient CO2 capture and dye removal. Journal of Materials Chemistry A, 4(19), 7313-7321. doi:10.1039/C6TA01945E.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-33FC-3
Zusammenfassung
Poly(ionic liquid) has recently served as an important precursor for nitrogen-doped functional porous carbons. It was applied here in a facile one-pot approach to synthesize nitrogen-doped porous carbon nanosheets (NPCNSs) using C3N4 nanosheets as sacrificial templates. C3N4 nanosheets are found to improve the carbonization yield and nitrogen content of NPCNSs and additionally facilitate the formation of a unique pore structure. Without post-treatments or activation steps, the as-synthesized NPCNS readily reaches a specific surface area above 1100 m2/g with hierarchical micro-/meso-/macropore structure while keeping a high nitrogen content (17.4 wt %). More significantly, the NPCNS is able to deliver not only a high CO2 adsorption capacity with outstanding reversibility, but also an unprecedented capacity in methylene blue uptake by 962.1 mg/g, which is among few highest ever reported for wastewater, with excellent reusability.