日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Resonant spatio-temporal forcing of oscillatory media

MPS-Authors
/persons/resource/persons198340

Utzny,  C.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons184328

Bär,  M.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Utzny, C., Zimmermann, W., & Bär, M. (2002). Resonant spatio-temporal forcing of oscillatory media. Europhysics Letters, 57(1), 113-119. Retrieved from http://www.edpsciences.org/articles/epl/abs/2002/01/6861/6861.html.


引用: https://hdl.handle.net/11858/00-001M-0000-002B-3860-F
要旨
An extension of the complex Ginzburg-Landau equation describing resonant spatio-temporal forcing of oscillatory media is investigated. Periodic forcing in space and time leads to spatial structures with two different symmetries: harmonic patterns with the same and subharmonic patterns with twice the wavelength of the external forcing. A linear stability analysis of the homogeneous state carried out analytically leads to subharmonic patterns for intermediate forcing strength, while harmonic modes prevail for very weak and strong forcing amplitudes. Numerical simulations confirm the analytical predictions for weak forcing and show coexistence between the two types of patterns beyond threshold. In addition, traveling localized patterns such as phase flips in subharmonic patterns and traveling patches of subharmonic patterns in a harmonic background have been discovered. In the parameter range of Benjamin-Feir turbulence, stable subharmonic patterns occur upon forcing, which undergo a transition scenario back to irregular dynamics for increasing values of the control parameter.