English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

An interacting network of T-box genes directs gene expression and fate in the zebrafish mesoderm

MPS-Authors
/persons/resource/persons191153

Kispert,  Andreas
Department of Developmental Biology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Goering, L. M., Hoshijima, K., Hug, B., Bisgrove, B., Kispert, A., & Grunwald, D. J. (2003). An interacting network of T-box genes directs gene expression and fate in the zebrafish mesoderm. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9410-9415.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-950C-1
Abstract
T-box genes encode transcription factors that play critical roles in generating the vertebrate body plan. In many developmental fields, multiple T-box genes are expressed in overlapping domains, establishing broad regions in which different combinations of T-box genes are coexpressed. Here we demonstrate that three T-box genes expressed in the zebrafish mesoderm, no tail, spadetail, and tbx6, operate as a network of interacting genes to regulate region-specific gene expression and developmental fate. Loss-of-function and gain-of-function genetic analyses reveal three kinds of interactions among the T-box genes: combinatorial interactions that generate new regulatory functions, additive contributions to common developmental pathways, and competitive antagonism governing downstream gene expression. We propose that T-box genes, like Hox genes, often function within gene networks comprised of related family members.