日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

An activated Q-SNARE/SM protein complex as a possible intermediate in SNARE assembly.

MPS-Authors
/persons/resource/persons186066

Jakhanwal,  S.
Department of Neurobiology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons188023

Lee,  C. T.
Research Group of Bioanalytical Mass Spectrometry, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15947

Urlaub,  H.
Research Group of Bioanalytical Mass Spectrometry, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15266

Jahn,  R.
Department of Neurobiology, MPI for Biophysical Chemistry, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)

2451326_Suppl_1.pdf
(付録資料), 2MB

2451326_Suppl_2.doc
(付録資料), 52KB

2451326_Suppl_3.doc
(付録資料), 75KB

引用

Jakhanwal, S., Lee, C. T., Urlaub, H., & Jahn, R. (2017). An activated Q-SNARE/SM protein complex as a possible intermediate in SNARE assembly. EMBO Journal, 36(12), 1788-1802. doi:10.15252/embj.201696270.


引用: https://hdl.handle.net/11858/00-001M-0000-002D-5E6D-6
要旨
Assembly of the SNARE proteins syntaxin1, SNAP25, and synaptobrevin into a SNARE complex is essential for exocytosis in neurons. For efficient assembly, SNAREs interact with additional proteins but neither the nature of the intermediates nor the sequence of protein assembly is known. Here, we have characterized a ternary complex between syntaxin1, SNAP25, and the SM protein Munc18-1 as a possible acceptor complex for the R-SNARE synaptobrevin. The ternary complex binds synaptobrevin with fast kinetics, resulting in the rapid formation of a fully zippered SNARE complex to which Munc18-1 remains tethered by the N-terminal domain of syntaxin1. Intriguingly, only one of the synaptobrevin truncation mutants (Syb1-65) was able to bind to the syntaxin1:SNAP25:Munc18-1 complex, suggesting either a cooperative zippering mechanism that proceeds bidirectionally or the progressive R-SNARE binding via an SM template. Moreover, the complex is resistant to disassembly by NSF Based on these findings, we consider the ternary complex as a strong candidate for a physiological intermediate in SNARE assembly.