Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Optomechanical Self-Channeling of Light in a Suspended Planar Dual-Nanoweb Waveguide

MPG-Autoren
/persons/resource/persons201022

Butsch,  A.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201045

Conti,  C.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201017

Biancalana,  F.
Biancalana Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201171

Russell,  P. St J.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Butsch, A., Conti, C., Biancalana, F., & Russell, P. S. J. (2012). Optomechanical Self-Channeling of Light in a Suspended Planar Dual-Nanoweb Waveguide. PHYSICAL REVIEW LETTERS, 108(9): 093903. doi:10.1103/PhysRevLett.108.093903.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-68E5-1
Zusammenfassung
It is shown that optomechanical forces can cause nonlinear self-channeling of light in a planar dual-slab waveguide. A system of two parallel silica nanowebs, spaced similar to 100 nm and supported inside a fiber capillary, is studied theoretically and an iterative scheme developed to analyze its nonlinear optomechanical properties. Steady-state field distributions and mechanical deformation profiles are obtained, demonstrating that self-channeling is possible in realistic structures at launched powers as low as a few mW. The differential optical nonlinearity of the self-channeled mode can be as much as 10 x 10(6) times higher than the corresponding electronic Kerr nonlinearity. It is also intrinsically broadband, does not utilize resonant effects, can be viewed as a consequence of the extreme nonlocality of the mechanical response, and in fact is a notable example of a so-called accessible soliton.