日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

The concurrent use of novel soil surface microclimate measurements to evaluate CO2 pulses in biocrusted interspaces in a cool desert ecosystem

MPS-Authors
/persons/resource/persons133115

Weber,  B.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Tucker, C. L., McHugh, T. A., Howell, A., Gill, R., Weber, B., Belnap, J., Grote, E., & Reed, S. C. (2017). The concurrent use of novel soil surface microclimate measurements to evaluate CO2 pulses in biocrusted interspaces in a cool desert ecosystem. Biogeochemistry, 135(3), 239-249. doi:10.1007/s10533-017-0372-3.


引用: https://hdl.handle.net/11858/00-001M-0000-002E-03DC-3
要旨
Carbon cycling associated with biological soil crusts, which occupy interspaces between vascular plants in drylands globally, may be an important part of the coupled climate-carbon cycle of the Earth system. A major challenge to understanding CO2 fluxes in these systems is that much of the biotic and biogeochemical activity occurs in the upper few mm of the soil surface layer (i.e., the ‘mantle of fertility’), which exhibits highly dynamic and difficult to measure temperature and moisture fluctuations. Here, we report a multi-sensor approach to simultaneously measuring temperature and moisture of this biocrust surface layer (0–2 mm), and the deeper soil profile, concurrent with automated measurement of surface soil CO2 effluxes. Our results illuminate robust relationships between biocrust water content and field CO2 pulses that have previously been difficult to detect and explain. All observed CO2 pulses over the measurement period corresponded to surface wetting events, including when the wetting events did not penetrate into the soil below the biocrust layer (0–2 mm). The variability of temperature and moisture of the biocrust surface layer was much greater than even in the 0–5 cm layer of the soil beneath the biocrust, or deeper in the soil profile. We therefore suggest that coupling surface measurements of biocrust moisture and temperature to automated CO2 flux measurements may greatly improve our understanding of the climatic sensitivity of carbon cycling in biocrusted interspaces in our study region, and that this method may be globally relevant and applicable.