English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Growth and detachment of oxygen bubbles induced by gold-catalyzed decomposition of hydrogen peroxide

MPS-Authors
/persons/resource/persons192998

Lohse,  Detlef
Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lv, P., Le The, H., Eijkel, J., Van den Berg, A., Zhang, X., & Lohse, D. (2017). Growth and detachment of oxygen bubbles induced by gold-catalyzed decomposition of hydrogen peroxide. Journal of Physical Chemistry C, 121(38), 20769-20776. doi:10.1021/acs.jpcc.7b04994.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002E-16E6-3
Abstract
Whereas bubble growth out of gas-oversatured solutions has been quite well understood, including the formation and stability of surface nanobubbles, this is not the case for bubbles forming on catalytic surfaces due to catalytic reactions, though it has important implications for gas evolution reactions and self-propulsion of micro/nanomotors fueled by bubble release. In this work we have filled this gap by experimentally and theoretically examining the growth and detachment dynamics of oxygen bubbles from hydrogen peroxide decomposition catalyzed by gold. We measured the bubble radius R(t) as a function of time by confocal microscopy and find R(t) alpha t(1/2). This diffusive growth behavior demonstrates that the bubbles grow from an oxygen-oversaturated environment. For several consecutive bubbles detaching from the same position in a short period of time, a well-repeated growing behavior is obtained from which we conclude the absence of noticeable depletion effect of oxygen from previous bubbles or increasing oversaturation from the gas production. In contrast, for two bubbles far apart either in space or in time, substantial discrepancies in their growth rates are observed, which we attribute to the variation in the local gas oversaturation. The current results show that the dynamical evolution of bubbles is influenced by comprehensive effects combining chemical catalysis and physical mass transfer. Finally, we find that the size of the bubbles at the moment of detachment is determined by the balance between buoyancy and surface tension and by the detailed geometry at the bubbles contact line.