MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transgene-free strategies for wireless control of animal physiology using magnetite nanoparticles

Author(s)
Senko, Alexander W.(Alexander William)
Thumbnail
Download1121596380-MIT.pdf (17.48Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Materials Science and Engineering.
Advisor
Polina Anikeeva.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Bioelectronic medicines are emerging therapies designed to control human physiology using electrically actuated stimuli instead of drugs. The most famous example is deep brain stimulation (DBS) for Parkinson's disease, in which electrodes are used to control brain activity and prevent tremors. An idealized version of this therapy would use soft materials and be wireless in order to be minimally invasive and cause minimal damage to brain tissue. Magnetic fields are an appealing candidate for wireless therapies because at many frequencies and amplitudes, the human body is similar enough in its magnetic response to vacuum that magnetic fields can penetrate arbitrarily deep. When combined with magnetic nanoparticles of biocompatible iron oxide, which can dissipate heat or produce forces when subjected to applied magnetic fields, magnetic fields can be applied from outside the body and evoke a physiological response within. This thesis describes the synthesis of large disc-shaped magnetic particles which undergo mechanical motion under lower frequency alternating magnetic fields. This mechanical motion enables a new paradigm of activating mechanosensitive ion channels, with increased scalability of the magnetic field apparatuses compared to the high-frequency fields needed to produce heat from magnetic nanoparticles. Wireless magnetic nanoparticle-mediated stimulation has often relied on transgenes, but by choosing tissues that endogenously express the proteins required to detect the physical stimuli (like heat or force) produced by the nanoparticles, it is possible to avoid the need for transgenes. Not relying on transgenes significantly lowers the barrier to clinical translation of this therapy platform.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 130-141).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/122538
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.