Suppression of Penning discharges between the KATRIN spectrometers
Author(s)
Aker, M.; Altenmüller, K.; Beglarian, A.; Behrens, J.; Berlev, A.; Besserer, U.; Blaum, K.; Block, F.; Bobien, S.; Bornschein, B.; Bornschein, L.; Bouquet, H.; Brunst, T.; Caldwell, T. S; Chilingaryan, S.; Choi, W.; Debowski, K.; Deffert, M.; Descher, M.; Díaz Barrero, D.; ... Show more Show less
Download10052_2020_Article_8278.pdf (2.531Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Abstract
The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)-neutrino mass with a sensitivity of 0.2eV/c
$$^2$$
2
by precisely measuring the endpoint region of the tritium
$$\beta $$
β
-decay spectrum. It uses a tandem of electrostatic spectrometers working as magnetic adiabatic collimation combined with an electrostatic (MAC-E) filters. In the space between the pre-spectrometer and the main spectrometer, creating a Penning trap is unavoidable when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create additional background electrons and endanger the spectrometer and detector section downstream. To counteract this problem, “electron catchers” were installed in the beamline inside the magnet bore between the two spectrometers. These catchers can be moved across the magnetic-flux tube and intercept on a sub-ms time scale the stored electrons along their magnetron motion paths. In this paper, we report on the design and the successful commissioning of the electron catchers and present results on their efficiency in reducing the experimental background.
Date issued
2020-09-04Department
Massachusetts Institute of Technology. Laboratory for Nuclear SciencePublisher
Springer Berlin Heidelberg
Citation
The European Physical Journal C. 2020 Sep 04;80(9):821
Version: Final published version