Predicting Individual Well-Being in Teamwork Contexts Based on Speech Features
Author(s)
Zeulner, Tobias; Hagerer, Gerhard Johann; Müller, Moritz; Vazquez, Ignacio; Gloor, Peter A.
Downloadinformation-15-00217.pdf (2.197Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Current methods for assessing individual well-being in team collaboration at the workplace often rely on manually collected surveys. This limits continuous real-world data collection and proactive measures to improve team member workplace satisfaction. We propose a method to automatically derive social signals related to individual well-being in team collaboration from raw audio and video data collected in teamwork contexts. The goal was to develop computational methods and measurements to facilitate the mirroring of individuals’ well-being to themselves. We focus on how speech behavior is perceived by team members to improve their well-being. Our main contribution is the assembly of an integrated toolchain to perform multi-modal extraction of robust speech features in noisy field settings and to explore which features are predictors of self-reported satisfaction scores. We applied the toolchain to a case study, where we collected videos of 20 teams with 56 participants collaborating over a four-day period in a team project in an educational environment. Our audiovisual speaker diarization extracted individual speech features from a noisy environment. As the dependent variable, team members filled out a daily PERMA (positive emotion, engagement, relationships, meaning, and accomplishment) survey. These well-being scores were predicted using speech features extracted from the videos using machine learning. The results suggest that the proposed toolchain was able to automatically predict individual well-being in teams, leading to better teamwork and happier team members.
Date issued
2024-04-12Department
System Design and Management Program.; Massachusetts Institute of Technology. Center for Collective IntelligenceJournal
Information
Publisher
MDPI AG
Citation
Zeulner, T.; Hagerer, G.J.; Müller, M.; Vazquez, I.; Gloor, P.A. Predicting Individual Well-Being in Teamwork Contexts Based on Speech Features. Information 2024, 15, 217.
Version: Final published version
ISSN
2078-2489