eCommons

 

Studies Of Pathological Dynamics After Microvascular Injury Using Nonlinear Optical Methods

Other Titles

Abstract

Microvascular lesions are a common feature in the aging brain and clinical evidence has correlated microvascular pathology with the development of neurodegenerative diseases such as Alzheimer's disease and dementia. Traditional animal models that replicate hemorrhagic and ischemic lesions in the brain typically affect large regions in the cortex and do not reproduce the small-scale lesions linked to neurodegeneration that likely stem from injuries to single microvessels. Due in part to this lack of smallscale injury animal models, there remains an incomplete understanding of the cellular and pathophysiological dynamics following small-scale vascular lesions, making progress on therapeutic strategies difficult. We used tightly focused femtosecond laser pulses to injure single penetrating arterioles (PA) (i.e., arterioles that plunge into the brain) in the cortex of live anesthetized rodents and used two-photon excited fluorescence (2PEF) imaging to quantify blood flow changes and to determine the time course of pathological consequences in the brain after injury. We find that after ischemic occlusion of a PA, nearby pial and penetrating arterioles do not actively compensate for the reduction of blood flow observed near the occluded blood vessel. We find that capillaries connected downstream to the clotted vessel dilate but other capillaries in the vicinity do not, suggesting that any compensatory signal that results in a physiological response travels vascularly. We ruptured individual PAs to induce microhemorrhages that resulted in extravasation of blood into the parenchyma. We find that tissue compression due to the hematoma does not collapse capillaries and cause acute ischemia. 2PEF imaging of mice expressing yellow fluorescent protein (YFP) in a subset of cortical neurons revealed no dendrite degeneration out to seven days after microhemorrhage. However, we did observe an inflammatory response by microglia/macrophages as quickly as 1.5-hrs after microhemorrhage which persisted past seven days. Lastly, we looked at spine (i.e., post-synaptic terminals on dendrites) dynamics on GFP fluorescent cortical dendrites and found a higher rate of spine loss and gain after a nearby microhemorrhage out to 14 days. This higher rate of spine turnover may help provide an understanding of the development of symptomatic dysfunction due to consequences in neuronal rewiring after a microhemorrhage. The work presented in this dissertation provides quantification of pathological consequences after both ischemic and hemorrhagic injury to a single blood vessel in the brain. We see that after a small-scale ischemic lesion, surrounding blood vessels do not elicit an active response to compensate for a lack of blood flow in the targeted blood vessel and surrounding tissue. After a hemorrhage to a single blood vessel, we do not observe any neuronal degeneration or death. These hemorrhagic lesions, however, do result in an inflammatory reaction that may lead to subtle changes in neuronal rewiring or seed the development of neurodegenerative diseases. The work presented in this dissertation can help provide new insights for the development of novel stroke therapeutics as well as provide cell specific observations about the development of pathological consequences in both ischemic and hemorrhagic lesions in the brain.

Journal / Series

Volume & Issue

Description

Sponsorship

Date Issued

2011-08-31

Publisher

Keywords

two photon imaging; hemorrhage; microvascular injury

Location

Effective Date

Expiration Date

Sector

Employer

Union

Union Local

NAICS

Number of Workers

Committee Chair

Schaffer, Chris

Committee Co-Chair

Committee Member

Xu, Chunhui
Fetcho, Joseph R.

Degree Discipline

Biomedical Engineering

Degree Name

Ph. D., Biomedical Engineering

Degree Level

Doctor of Philosophy

Related Version

Related DOI

Related To

Related Part

Based on Related Item

Has Other Format(s)

Part of Related Item

Related To

Related Publication(s)

Link(s) to Related Publication(s)

References

Link(s) to Reference(s)

Previously Published As

Government Document

ISBN

ISMN

ISSN

Other Identifiers

Rights

Rights URI

Types

dissertation or thesis

Accessibility Feature

Accessibility Hazard

Accessibility Summary

Link(s) to Catalog Record