Persistent URL of this record https://hdl.handle.net/1887/70698
Documents
-
- Download
- 1709.04205
- Not Applicable (or Unknown)
-
open access
- Full text at publishers site
In Collections
This item can be found in the following collections:
Photometric redshifts for the Kilo-Degree Survey: Machine-learning analysis with artificial neural networks
- All authors
- Bilicki, M.A.; Hoekstra, H.; Brown, M.J.I.; Amaro, V.; Blake, C.; Cavuoti, S.; Jong, J.T.A. de; Georgiou, C.; Hildebrandt, H.; Wolf, C.; Amon, A.; Brescia, M.; Brough, S.; Costa Duarte, M.V.; Erben, T.; Glazebrook, K.; Grado, A.; Heymans, C.; Jarrett, T.; Joudaki, S.; Kuijken, K.H.; Longo, G.; Napolitano, N.; Parkinson, D.; Vellucci, C.; Verdoes Kleijn, G.A.; Wang, L.
- Date
- 2018
- Journal
- Astronomy & Astrophysics
- Volume
- 616
- Pages
- A69