Plasmonic nanoparticle-based epoxy photocuring: A deeper look

Description
Abstract

Many epoxyᅠadhesivesᅠrequire high temperatures to bondᅠcomposite materials. However, oven heating severely restricts what may be attached or enclosed within composite material-based structures and greatly limits the possibilities for repair. Inspired by initial reports of photothermal epoxy curing usingᅠplasmonicnanoparticles, we examine how laser-illuminated Au nanoparticles embedded within high-temperature epoxy films convert the conventional thermal curing process into a photothermally driven one. Our theoretical investigations reveal that plasmonic nanoparticle-based epoxy photocuring proceeds through a four-stage process: a rapid, plasmon-induced temperature increase, a slow localizedᅠinitializationᅠof the curing chemistry that increases theᅠoptical absorptionᅠof the epoxy film, a subsequent temperature increase as the epoxy absorbs theᅠlaser radiationᅠdirectly, and a final stage that completes theᅠchemical transformationᅠof the epoxy film to its cured state. Our experimental studies validate this model, and also reveal that highly local photocuring can create a stronger bond between composite materials than thermal curing without nanoparticles, at times even stronger than the composite material itself, substantially reducing the time needed for the curing process. Our findings support key advances in our understanding of this approach to the rapid, highly efficient bonding and repair of composite materials.

Description
Advisor
Degree
Type
Journal article
Keywords
Citation

Roberts, Adam T., Yang, Jian, Reish, Matthew E., et al.. "Plasmonic nanoparticle-based epoxy photocuring: A deeper look." Materials Today, 27, (2019) Elsevier: 14-20. https://doi.org/10.1016/j.mattod.2018.09.005.

Has part(s)
Forms part of
Rights
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Citable link to this page