Electricity markets; Mixed-integer linear programming; Multi-fidelity optimization; Pumped hydro energy storage; Surrogate-based optimization algorithms; Day-ahead scheduling; Integer Linear Programming; Mixed integer linear; Optimization algorithms; Programming solutions; Pumped-hydro energy storages; Redispatch; Surrogate-based optimization; Surrogate-based optimization algorithm; Renewable Energy, Sustainability and the Environment; Energy Engineering and Power Technology; Electrical and Electronic Engineering
Abstract :
[en] Optimizing the operation of Pumped-Hydro Energy Storage (PHES) requires accurately representing nonlinearities, such as reservoir geometry and water-power conversion efficiency. While traditional methods like Mixed-Integer Linear Programming (MILP) offer theoretical guarantees, they rely on approximations that can lead to suboptimal decisions and costly redispatch or penalties. Because of its inherent approximations, MILP is a low-fidelity optimization model. In this paper, we propose a multi-fidelity approach that combines MILP with a Surrogate-Based Optimization Algorithm (SBOA). MILP solutions are used as warm-starts for the SBOA, which refines the solutions using a high-fidelity simulator of PHES dynamics and redispatch costs. This allows the SBOA to handle nonlinearities and improve the initial MILP solution by exploring areas with higher expected value. Our approach is tested on a PHES unit that participates in the energy and reserve markets in Belgium. The results show that, despite the extensive efforts made in MILP modeling, decisions can still be improved through smart integration with SBOAs.
Disciplines :
Energy
Author, co-author :
Favaro, Pietro ✱; Université de Mons - UMONS > Faculté Polytechnique > Service de Génie Electrique
Gobert, Maxime ✱; Université de Mons - UMONS > Faculté Polytechnique > Service de Génie Electrique ; Mathematics and Operational Research, Mons, Belgium
Toubeau, Jean-François ; Power System and Market Research Group (PSMR), University of Mons, Mons, Belgium
✱ These authors have contributed equally to this work.
Language :
English
Title :
Multi-fidelity optimization for the day-ahead scheduling of Pumped Hydro Energy Storage
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Taghizad-Tavana, K., Kheljani, H.S., Hosseini, S.H., Tarafdar-Hagh, M., Daneshvar, M., Multi-dimensional management of smart distribution networks: Comparative analysis of box and polyhedral methods for modeling uncertainties. Sustainable Cities Soc., 108, 2024, 105488, 10.1016/j.scs.2024.105488 URL https://www.sciencedirect.com/science/article/pii/S2210670724003159.
Taghizad-Tavana, K., Tarafdar-Hagh, M., Nojavan, S., Yasinzadeh, M., Ghanbari-Ghalehjoughi, M., Operation of smart distribution networks by considering the spatial–temporal flexibility of data centers and battery energy storage systems. Sustainable Cities Soc., 114, 2024, 105746, 10.1016/j.scs.2024.105746 URL https://www.sciencedirect.com/science/article/pii/S2210670724005717.
DOE global energy storage database - statistics. 2022 URL https://sandia.gov/ess-ssl/gesdb/public/statistics.html.
Pannatier, Y., Optimisation Des Stratégies De Réglage D'une Installation De Pompage-Turbinage À Vitesse Variable - Infoscience. (Ph.D. thesis), 2018, Université de Lausanne URL https://infoscience.epfl.ch/record/149805/files/.
Toubeau, J.-F., Iassinovski, S., Jean, E., Parfait, J.-Y., Bottieau, J., De Grève, Z., Vallée, F., Non-linear hybrid approach for the scheduling of merchant underground pumped hydro energy storage. IET Gener. Trans. Distrib. 13:21 (2019), 4798–4808, 10.1049/iet-gtd.2019.0204.
Zhao, T., Zhao, J., Yang, D., Improved dynamic programming for hydropower reservoir operation. J. Water Resour. Plan. Manag. 140:3 (2014), 365–374, 10.1061/(ASCE)WR.1943-5452.0000343 URL https://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-5452.0000343, Publisher: American Society of Civil Engineers.
Wang, Z., Fang, G., Wen, X., Tan, Q., Zhang, P., Liu, Z., Coordinated operation of conventional hydropower plants as hybrid pumped storage hydropower with wind and photovoltaic plants. Energy Convers. Manage., 277, 2023, 116654, 10.1016/j.enconman.2022.116654 URL https://www.sciencedirect.com/science/article/pii/S0196890422014327.
Schäffer, L.E., Helseth, A., Korp UŮas, M., A stochastic dynamic programming model for hydropower scheduling with state-dependent maximum discharge constraints. Renew. Energy 194 (2022), 571–581, 10.1016/j.renene.2022.05.106 URL https://www.sciencedirect.com/science/article/pii/S0960148122007534.
Wu, X., Wu, X., Guo, R., Guo, R., Cheng, X., Cheng, X., Cheng, C., Cheng, C., Combined aggregated sampling stochastic dynamic programming and simulation-optimization to derive operation rules for large-scale hydropower system. Energies, 14(3), 2021, 625, 10.3390/en14030625 MAG ID: 3123505095.
Marti, K., Kall, P., Stochastic Programming Methods and Technical Applications: Proceedings of the 3rd GAMM/IFIP-Workshop on “Stochastic Optimization: Numerical Methods and Technical Applications” held at the Federal Armed Forces University Munich, Neubiberg/München, Germany, June 17–20, 1996. Lecture Notes in Economics and Mathematical Systems, 2012, Springer Berlin Heidelberg URL https://books.google.com/books?id=VzPtCAAAQBAJ.
Daneshvar, M., Mohammadi-Ivatloo, B., Zare, K., Asadi, S., Two-stage stochastic programming model for optimal scheduling of the wind-thermal-hydropower-pumped storage system considering the flexibility assessment. Energy, 193, 2020, 116657, 10.1016/j.energy.2019.116657.
Jamii, J., Jamii, J., Trabelsi, M., Trabelsi, M., Mansouri, M., Mansouri, M., Mimouni, M.F., Mimouni, M.F., Shatanawi, W., Shatanawi, W., Non-linear programming-based energy management for a wind farm coupled with pumped hydro storage system. Sustainability, 14(18), 2022, 11287, 10.3390/su141811287 MAG ID: 4294958949 S2ID: 168e73ef00f7ae0d7c6a59f1c7587793af5aa3c8.
Ak, M., Kentel, E., Savasaneril, S., Quantifying the revenue gain of operating a cascade hydropower plant system as a pumped-storage hydropower system. Renew. Energy 139 (2019), 739–752 Publisher: Elsevier.
Toufani, P., Karakoyun, E.C., Nadar, E., Fosso, O.B., Kocaman, A.S., Optimization of pumped hydro energy storage systems under uncertainty: A review. J. Energy Storage, 73, 2023, 109306, 10.1016/j.est.2023.109306 URL https://www.sciencedirect.com/science/article/pii/S2352152X23027044.
Cheng, C., Su, C., Wang, P., Shen, J., Lu, J., Wu, X., An MILP-based model for short-term peak shaving operation of pumped-storage hydropower plants serving multiple power grids. Energy 163 (2018), 722–733, 10.1016/j.energy.2018.08.077 URL https://www.sciencedirect.com/science/article/pii/S0360544218316098.
Alvarez, G.E., Operation of pumped storage hydropower plants through optimization for power systems. Energy, 202, 2020, 117797, 10.1016/j.energy.2020.117797 URL https://www.sciencedirect.com/science/article/pii/S036054422030904X.
Toubeau, J.-F., De Greve, Z., Goderniaux, P., Vallee, F., Bruninx, K., Chance-constrained scheduling of underground pumped hydro energy storage in presence of model uncertainties. IEEE Trans. Sustain. Energy 11:3 (2020), 1516–1527, 10.1109/TSTE.2019.2929687 Number: 3 Place: PISCATAWAY Publisher: PISCATAWAY: IEEE.
Gomes e Souza, H., Finardi, E.C., Brito, B.H., Takigawa, F.Y.K., Partitioning approach based on convex hull and multiple choice for solving hydro unit-commitment problems. Electr. Power Syst. Res., 211, 2022, 108285, 10.1016/j.epsr.2022.108285 URL https://www.sciencedirect.com/science/article/pii/S0378779622004783.
Favaro, P., Dolányi, M., Vallée, F., Toubeau, J.-F., Neural network informed day-ahead scheduling of pumped hydro energy storage. Energy, 289, 2024, 129999, 10.1016/j.energy.2023.129999 URL https://www.sciencedirect.com/science/article/pii/S0360544223033935.
Lai, V., Lai, V.S., Huang, Y.F., Huang, Y.F., Koo, C.H., Koo, C.H., Ahmed, A.N., Ahmed, A.N., El-Shafie, A., El-Shafie, A., A review of reservoir operation optimisations: from traditional models to metaheuristic algorithms. Arch. Comput. Methods Eng., 2022, 10.1007/s11831-021-09701-8 MAG ID: 4214558369.
Holland, J.H., Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. 1992, The MIT Press, 10.7551/mitpress/1090.001.0001 URL https://doi.org/10.7551/mitpress/1090.001.0001.
Chen, P.-H., Particle swarm optimization for power dispatch with pumped hydro. Lazinica, A., (eds.) Particle Swarm Optimization, 2009, IntechOpen, Rijeka, 10.5772/6744 Ch. 7.
Zhou, Y., Guo, S., Chang, F.-J., Xu, C.-Y., Boosting hydropower output of mega cascade reservoirs using an evolutionary algorithm with successive approximation. Appl. Energy 228 (2018), 1726–1739, 10.1016/j.apenergy.2018.07.078 URL https://www.sciencedirect.com/science/article/pii/S0306261918310973.
Fan, J.-L., Huang, X., Shi, J., Li, K., Cai, J., Zhang, X., Complementary potential of wind-solar-hydro power in Chinese provinces: Based on a high temporal resolution multi-objective optimization model. Renew. Sustain. Energy Rev., 184, 2023, 113566, 10.1016/j.rser.2023.113566 URL https://www.sciencedirect.com/science/article/pii/S1364032123004239.
Al-Aqeeli, Y.H., Mahmood Agha, O.M.A., Optimal operation of multi-reservoir system for hydropower production using particle swarm optimization algorithm. Water Resour. Manag. 34:10 (2020), 3099–3112, 10.1007/s11269-020-02583-8.
Mohseni, S., Brent, A.C., Burmester, D., A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid. Appl. Energy, 259, 2020, 114224, 10.1016/j.apenergy.2019.114224 URL https://www.sciencedirect.com/science/article/pii/S0306261919319117.
Iweh, C.D., Akupan, E.R., Control and optimization of a hybrid solar PV – hydro power system for off-grid applications using particle swarm optimization (PSO) and differential evolution (DE). Energy Rep. 10 (2023), 4253–4270, 10.1016/j.egyr.2023.10.080 URL https://www.sciencedirect.com/science/article/pii/S2352484723015159.
Saab, S., Othman, F., Tan, C.G., Allawi, M., El-Shafie, A., Review on generating optimal operation for dam and reservoir water system: simulation models and optimization algorithms. Appl. Water Sci., 12, 2022, 73, 10.1007/s13201-022-01593-8.
Immanuel Selvakumar, A., Civilized swarm optimization for multiobjective short-term hydrothermal scheduling. Int. J. Electr. Power Energy Syst. 51 (2013), 178–189, 10.1016/j.ijepes.2013.03.002 URL https://www.sciencedirect.com/science/article/pii/S0142061513000999.
Cheng, Q., Liu, P., Feng, M., Cheng, L., Ming, B., Luo, X., Liu, W., Xu, W., Huang, K., Xia, J., Complementary operation with wind and photovoltaic power induces the decrease in hydropower efficiency. Appl. Energy, 339, 2023, 121006, 10.1016/j.apenergy.2023.121006 URL https://www.sciencedirect.com/science/article/pii/S0306261923003707.
Gholami, K., Karimi, S., Rastgou, A., Fuzzy risk-based framework for scheduling of energy storage systems in photovoltaic-rich networks. J. Energy Storage, 52, 2022, 104902, 10.1016/j.est.2022.104902 URL https://www.sciencedirect.com/science/article/pii/S2352152X22009094.
Črepinšek, M., Liu, S.-H., Mernik, L., A note on teaching–learning-based optimization algorithm. Inform. Sci. 212 (2012), 79–93, 10.1016/j.ins.2012.05.009 URL https://www.sciencedirect.com/science/article/pii/S0020025512003532.
Shaw, A.R., Smith Sawyer, H., LeBoeuf, E.J., McDonald, M.P., Hadjerioua, B., Hydropower optimization using artificial neural network surrogate models of a high-fidelity hydrodynamics and water quality model. Water Resour. Res. 53:11 (2017), 9444–9461, 10.1002/2017WR021039 arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017WR021039 URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017WR021039.
Gobert, M., Gmys, J., Toubeau, J.-F., Melab, N., Tuyttens, D., Vallée, F., Batch acquisition for parallel Bayesian optimization—Application to hydro-energy storage systems scheduling. Algorithms, 15(12), 2022, 10.3390/a15120446.
Jin, Y., Olhofer, M., Sendhoff, B., On evolutionary optimization with approximate fitness functions. Proceedings of the 2Nd Annual Conference on Genetic and Evolutionary Computation, GECCO ’00, 2000, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 786–793 URL http://dl.acm.org/citation.cfm?id=2933718.2933864.
Eriksson, D., Pearce, M., Gardner, J.R., Turner, R., Poloczek, M., Scalable global optimization via local Bayesian optimization. 2020 URL http://arxiv.org/abs/1910.01739. arXiv:.
Schonlau, M., Computer Experiments and Global Optimization. (Ph.D. thesis), 1997, University of Waterloo.
Gobert, M., Briffoteaux, G., Gmys, J., Melab, N., Tuyttens, D., Observations in applying Bayesian versus evolutionary approaches and their hybrids in parallel time-constrained optimization. Eng. Appl. Artif. Intell., 137, 2024, 109075, 10.1016/j.engappai.2024.109075 URL https://www.sciencedirect.com/science/article/pii/S0952197624012338.
Ginsbourger, D., Le Riche, R., Carraro, L., Kriging is well-suited to parallelize optimization. Computational Intelligence in Expensive Optimization Problems, 2010, 131–162, 10.1007/978-3-642-10701-6_6.
Lyu, W., Yang, F., Yan, C., Zhou, D., Zeng, X., Batch Bayesian optimization via multi-objective acquisition ensemble for automated analog circuit design. Dy, J., Krause, A., (eds.) Proceedings of the 35th International Conference on Machine Learning Proceedings of Machine Learning Research, vol. 80, 2018, PMLR, Stockholmsmässan, Stockholm Sweden, 3306–3314 URL http://proceedings.mlr.press/v80/lyu18a.html.
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6:2 (2002), 182–197, 10.1109/4235.996017.
Močkus, J., On bayesian methods for seeking the extremum. Marchuk, G.I., (eds.) Optimization Techniques IFIP Technical Conference Novosibirsk, July 1–7, 1974, 1975, Springer Berlin Heidelberg, Berlin, Heidelberg, 400–404.
N. Srinivas, A. Krause, S. Kakade, M. Seeger, Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design, in: ICML 2010 - Proceedings, 27th International Conference on Machine Learning, 2010, pp. 1015–1022.
Kushner, H.J., A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Fluids Eng. 86:1 (1964), 97–106, 10.1115/1.3653121 arXiv:https://asmedigitalcollection.asme.org/fluidsengineering/article-pdf/86/1/97/5763745/97_1.pdf.
Briffoteaux, G., Pysbo: Python framework for surrogate-based optimization. 2021 https://pysbo.readthedocs.io/.