Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/19449
Τίτλος: Internet of Ships: A Survey on Architectures, Emerging Applications, and Challenges
Συγγραφείς: Aslam, Sheraz 
Michaelides, Michalis P. 
Herodotou, Herodotos 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Marine vehicles;Internet of Things;Industries;Transportation;Safety;Satellite communication;E-navigation;Internet of Ships (IoS);Internet of Things (IoT);Maritime industry;Sea transportation;Smart ocean;Smart ports;Smart shipping;Smart transportation
Ημερομηνία Έκδοσης: Οκτ-2020
Πηγή: IEEE Internet of Things Journal, 2020, vol. 7, no. 10, pp. 9714-9727
Volume: 7
Issue: 10
Start page: 9714
End page: 9727
Περιοδικό: IEEE Internet of Things Journal 
Περίληψη: The recent emergence of Internet-of-Things (IoT) technologies in mission-critical applications in the maritime industry has led to the introduction of the Internet-of-Ships (IoS) paradigm. IoS is a novel application domain of IoT that refers to the network of smart interconnected maritime objects, which can be any physical device or infrastructure associated with a ship, a port, or the transportation itself, with the goal of significantly boosting the shipping industry toward improved safety, efficiency, and environmental sustainability. In this article, we provide a comprehensive survey of the IoS paradigm, its architecture, its key elements, and its main characteristics. Furthermore, we review the state of the art for its emerging applications, including safety enhancements, route planning and optimization, collaborative decision making, automatic fault detection and preemptive maintenance, cargo tracking, environmental monitoring, energy-efficient operations, and automatic berthing. Finally, the presented open challenges and future opportunities for research in the areas of satellite communications, security, privacy, maritime data collection, data management, and analytics, provide a road map toward optimized maritime operations and autonomous shipping.
URI: https://hdl.handle.net/20.500.14279/19449
ISSN: 23274662
DOI: 10.1109/JIOT.2020.2993411
Rights: © IEEE
Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Article
Affiliation: Cyprus University of Technology 
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

97
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations

70
Last Week
0
Last month
5
checked on 29 Οκτ 2023

Page view(s)

270
Last Week
2
Last month
6
checked on 1 Ιουν 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons