日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Enriching the Symphony of Gravitational Waves from Binary Black Holes by Tuning Higher Harmonics

MPS-Authors
/persons/resource/persons127862

Buonanno,  Alessandra
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons192097

Bohé,  Alejandro
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons192127

Taracchini,  Andrea
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons20659

Hinder,  Ian
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons192111

Ossokine,  Serguei
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

1803.10701.pdf
(プレプリント), 2MB

付随資料 (公開)
There is no public supplementary material available
引用

Cotesta, R., Buonanno, A., Bohé, A., Taracchini, A., Hinder, I., & Ossokine, S. (2018). Enriching the Symphony of Gravitational Waves from Binary Black Holes by Tuning Higher Harmonics. Physical Review D, 98(8):. doi:10.1103/PhysRevD.98.084028.


引用: https://hdl.handle.net/21.11116/0000-0001-4095-E
要旨
For the first time, we construct an inspiral-merger-ringdown waveform model
within the effective-one-body formalism for spinning, nonprecessing binary
black holes that includes gravitational modes beyond the dominant $(\ell,|m|) =
(2,2)$ mode, specifically $(\ell,|m|)=(2,1),(3,3),(4,4),(5,5)$. Our multipolar
waveform model incorporates recent (resummed) post-Newtonian results for the
inspiral and information from 157 numerical-relativity simulations, and 13
waveforms from black-hole perturbation theory for the (plunge-)merger and
ringdown. We quantify the improved accuracy including higher-order modes by
computing the faithfulness of the waveform model against the
numerical-relativity waveforms used to construct the model. We define the
faithfulness as the match maximized over time, phase of arrival,
gravitational-wave polarization and sky position of the waveform model, and
averaged over binary orientation, gravitational-wave polarization and sky
position of the numerical-relativity waveform. When the waveform model contains
only the $(2,2)$ mode, we find that the averaged faithfulness to
numerical-relativity waveforms containing all modes with $\ell \leq$ 5 ranges
from $90\%$ to $99.9\%$ for binaries with total mass $20-200 M_\odot$ (using
the Advanced LIGO's design noise curve). By contrast, when the
$(2,1),(3,3),(4,4),(5,5)$ modes are also included in the model, the
faithfulness improves to $99\%$ for all but four configurations in the
numerical-relativity catalog, for which the faithfulness is greater than
$98.5\%$. Using our results, we also develop also a (stand-alone) waveform
model for the merger-ringdown signal, calibrated to numerical-relativity
waveforms, which can be used to measure multiple quasi-normal modes. The
multipolar waveform model can be extended to include spin-precession, and will
be employed in upcoming observing runs of Advanced LIGO and Virgo.