Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs

MPG-Autoren
/persons/resource/persons210513

Klatt,  Judith M.
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210425

Haas,  Sebastian
IMPRS MarMic, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210890

Yilmaz,  Pelin
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210257

de Beer,  Dirk
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210683

Polerecky,  Lubos
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Klatt, J. M., Haas, S., Yilmaz, P., de Beer, D., & Polerecky, L. (2015). Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs. Environmental Microbiology, 17: 1, pp. 3301-3313.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-C3D2-5
Zusammenfassung
We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2 S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2 S: (i) H2 S accelerated the recovery of photosynthesis after prolonged exposure to darkness and anoxia. We suggest that this is possibly due to regulatory effects of H2 S on photosystem I components and/or on the Calvin cycle. (ii) H2 S concentrations of up to 210 μM temporarily enhanced the photosynthetic rates at low irradiance. Modelling showed that this enhancement is plausibly based on changes in the light-harvesting efficiency. (iii) Above a certain light-dependent concentration threshold H2 S also acted as an inhibitor. Intriguingly, this inhibition was not instant but occurred only after a specific time interval that decreased with increasing light intensity. That photosynthesis is most sensitive to inhibition at high light intensities suggests that H2 S inactivates an intermediate of the oxygen evolving complex that accumulates with increasing light intensity. We discuss the implications of these three effects of H2 S in the context of cyanobacterial photosynthesis under conditions with diurnally fluctuating light and H2 S concentrations, such as those occurring in microbial mats and biofilms.