Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Transport and Consumption of Oxygen and Methane in Different Habitats of the Håkon Mosby Mud Volcano (HMMV.

MPG-Autoren
/persons/resource/persons210362

Felden,  J.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210857

Wenzhöfer,  F.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210367

Feseker,  T.
Marine Geochemistry Group, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210280

Boetius,  A.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Felden10.pdf
(Verlagsversion), 5MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Felden, J., Wenzhöfer, F., Feseker, T., & Boetius, A. (2010). Transport and Consumption of Oxygen and Methane in Different Habitats of the Håkon Mosby Mud Volcano (HMMV. Limnology and Oceanography, 55, 2366-2380.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-CB90-7
Zusammenfassung
The Ha°kon Mosby Mud Volcano is a highly active methane seep hosting different chemosynthetic
communities such as thiotrophic bacterial mats and siboglinid tubeworm assemblages. This study focuses on in
situ measurements of methane fluxes to and from these different habitats, in comparison to benthic methane and
oxygen consumption rates. By quantifying in situ oxygen, methane, and sulfide fluxes in different habitats, a
spatial budget covering areas of 10–1000-m diameter was established. The range of dissolved methane efflux (770–
2 mmol m22 d21) from the center to the outer rim was associated with a decrease in temperature gradients from
46uCm21 to , 1uCm21, indicating that spatial variations in fluid flow control the distribution of benthic habitats
and activities. Accordingly, total oxygen uptake (TOU) varied between the different habitats by one order of
magnitude from 15 mmol m22 d21 to 161 mmol m22 d21. High fluid flow rates appeared to suppress benthic
activities by limiting the availability of electron acceptors. Accordingly, the highest TOU was associated with the
lowest fluid flow and methane efflux. This was most likely due to the aerobic oxidation of methane, which may be
more relevant as a sink for methane as previously considered in submarine ecosystems.