日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Nitrification in freshwater sediments as influenced by insect larvae: Quantification by microsensors and fluorescence in situ hybridization

MPS-Authors
/persons/resource/persons210228

Altmann,  D.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons56955

Stief,  P.
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210230

Amann,  R.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210257

de Beer,  D.
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

Amann4.pdf
(出版社版), 334KB

付随資料 (公開)
There is no public supplementary material available
引用

Altmann, D., Stief, P., Amann, R., & de Beer, D. (2004). Nitrification in freshwater sediments as influenced by insect larvae: Quantification by microsensors and fluorescence in situ hybridization. Microbial Ecology, 48(2), 145-153.


引用: https://hdl.handle.net/21.11116/0000-0001-D119-7
要旨
Sediment-reworking macrofauna can stimulate nitrification by increasing the O2 penetration into sediments or it can reduce nitrification by grazing on nitrifying bacteria. We investigated the influence of Chironomus riparius larvae (Insecta: Diptera) on the in situ activity, abundance, and distribution of NH +4 -oxidizing (AOB) and NO −2 -oxidizing bacteria (NOB) in two freshwater sediments with microsensors and fluorescence in situ hybridization. In organic-poor sediment, nitrification activity was reduced by the presence of C. riparius larvae, whereas no such effect was detected in organic-rich sediment. We explain this difference with the variable larval burrowing and grazing behavior in the two sediment types: In organic-poor sediment larval activities were intense and evenly distributed across the whole sediment surface, whereas in organic-rich sediment larval activities were locally restricted to the microenvironment of animal burrows. Surprisingly, the animals did not cause any significant change of the abundance of AOB and NOB. This implies that the observed reduction of nitrification activity was not density-regulated, but rather was due to the lowered metabolic activity of the nitrifiers. Partial digestion and redeposition of particle-associated bacteria by C. riparius larvae are believed to have caused this loss of metabolic activity.