Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Effects of N-fertilisation on CH4 oxidation and production, and consequences for CH4 emissions from microcosms and rice fields

MPG-Autoren
/persons/resource/persons210546

Krüger,  M.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Krüger, M., & Frenzel, P. (2003). Effects of N-fertilisation on CH4 oxidation and production, and consequences for CH4 emissions from microcosms and rice fields. Global Change Biology, 9(5), 773-784.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-D239-2
Zusammenfassung


The world's growing human population causes an increasing demand for food, of which rice is one of the most important sources. In rice production nitrogen is often a limiting factor. As a consequence increasing amounts of fertiliser will have to be applied to maximise yields. There is an ongoing discussion on the possible effects of fertilisation on CH4 emissions. We therefore investigated the effects of N‐fertiliser (urea) on CH4 emission, production and oxidation in rice microcosms and field experiments. In the microcosms, a substantial but short‐lived reduction of CH4 emission was observed after N‐addition to 43‐d‐old rice plants. Methane oxidation increased by 45%, demonstrated with inhibitor measurements and model calculations based on stable carbon isotope data (δ13CH4). A second fertilisation applied to 92‐d‐old plants had no effect on CH4 emission rates.

The positive effect of additional N on methanotrophic bacteria was also found in vitro for potential CH4 oxidation rates in soil and root samples from the microcosm and field experiments, indicated by elevated initial oxidation rates and reduced lag‐phases. Fertilisation did not affect methane production in the microcosms. In the field, the effects were diverse: methane production was inhibited in the topsoil, but stimulated instead in the bulk soil. Stimulation occurred probably in the anaerobic food chain at the level of hydrolytic or fermenting bacteria, because acetate, a methanogenic precursor, increased simultaneously.

Combining field, microcosm and laboratory experiments we conclude that any agricultural treatment improving the N‐supply to the rice plants will also be favourable for the CH4 oxidising bacteria. However, N‐fertilisation had only a transient influence and was counter‐balanced in the field by an elevated CH4 production. A negative effect of the fertilisation was a transient increase of N2O emissions from the microcosms. However, integrating over the season the global warming potential (GWP) of N2O emitted after fertilisation was still negligible compared to the GWP of emitted CH4.