English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Sugar and ice: Immunoelectron microscopy using cryosections according to the Tokuyasu method

MPS-Authors
/persons/resource/persons182306

Möbius,  Wiebke
Electron microscopy, Neurogenetics, Max Planck Institute of Experimental Medicine, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Möbius, W., & Posthuma, G. (2019). Sugar and ice: Immunoelectron microscopy using cryosections according to the Tokuyasu method. Tissue & Cell, 57, 90-102. doi:10.1016/j.tice.2018.08.010.


Cite as: https://hdl.handle.net/21.11116/0000-0002-17FA-B
Abstract
Since the pioneering work of Kiyoteru Tokuyasu in the 70ths the use of thawed cryosections prepared according to the “Tokuyasu-method” for immunoelectron microscopy did not lose popularity. We owe this method a whole subcellular world described by discrete gold particles pointing at cargo, receptors and organelle markers on delicate images of the inner life of a cell. Here we explain the procedure of sample preparation, sectioning and immunolabeling in view of recent developments and the reasoning behind protocols including some historical perspective. Cryosections are prepared from chemically fixed and sucrose infiltrated samples and labeled with affinity probes and electron dense markers. These sections are ideal substrates for immunolabeling, since antigens are not exposed to organic solvent dehydration or masked by resin. Instead, the structures remain fully hydrated throughout the labeling procedure. Furthermore, target molecules inside dense intercellular structural elements, cells and organelles are accessible to antibodies from the section surface. For the validation of antibody specificity several approaches are recommended including knock-out tissue and reagent controls. Correlative light and electron microscopy strategies involving correlative probes are possible as well as correlation of live imaging with the underlying ultrastructure. By applying stereology, gold labeling can be quantified and evaluated for specificity.