日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Characterization of the shape-staggering effect in mercury nuclei

MPS-Authors
/persons/resource/persons104736

Atanasov,  Dinko
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30312

Blaum,  Klaus
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30722

Kreim,  Susanne Waltraud
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons187877

Manea,  Vladimir
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons103130

Wolf,  Robert
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Marsh, B. A., Goodacre, T. D., Sels, S., Tsunoda, Y., Andel, B., Andreyev, A. N., Althubiti, N. A., Atanasov, D., Barzakh, A. E., Billowes, J., Blaum, K., Cocolios, T. E., Cubiss, J. G., Dobaczewski, J., Farooq-Smith, G. J., Fedorov, D. V., Fedosseev, V. N., Flanagan, K. T., Gaffney, L. P., Ghys, L., Huyse, M., Kreim, S. W., Lunney, D., Lynch, K. M., Manea, V., Palenzuela, Y. M., Molkanov, P. L., Otsuka, T., Pastore, A., Rosenbusch, M., Rossel, R. E., Rothe, S., Schweikhard, L., Seliverstov, M. D., Spagnoletti, P., Beveren, C. V., Duppen, P. V., Veinhard, M., Verstraelen, E., Welker, A., Wendt, K., Wienholtz, F., Wolf, R., Zadvornaya, A., & Zuber, K. (2018). Characterization of the shape-staggering effect in mercury nuclei. Nature Physics, 14, 1163-1167. doi:10.1038/s41567-018-0292-8.


引用: https://hdl.handle.net/21.11116/0000-0003-276B-A
要旨
In rare cases, the removal of a single proton (Z) or neutron (N) from an atomic nucleus leads to a dramatic shape change. These instances are crucial for understanding the components of the nuclear interactions that drive deformation. The mercury isotopes (Z = 80) are a striking example: their close neighbours, the lead isotopes (Z = 82), are spherical and steadily shrink with decreasing N. The even-mass (A = N + Z) mercury isotopes follow this trend. The odd-mass mercury isotopes 181,183,185Hg, however, exhibit noticeably larger charge radii. Due to the experimental difficulties of probing extremely neutron-deficient systems, and the computational complexity of modelling such heavy nuclides, the microscopic origin of this unique shape staggering has remained unclear. Here, by applying resonance ionization spectroscopy, mass spectrometry and nuclear spectroscopy as far as 177Hg, we determine 181Hg as the shape-staggering endpoint. By combining our experimental measurements with Monte Carlo shell model calculations, we conclude that this phenomenon results from the interplay between monopole and quadrupole interactions driving a quantum phase transition, for which we identify the participating orbitals. Although shape staggering in the mercury isotopes is a unique and localized feature in the nuclear chart, it nicely illustrates the concurrence of single-particle and collective degrees of freedom at play in atomic nuclei.