日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

ポスター

Dual Coil Continuous ASL of the human brain at 9.4 T

MPS-Authors
/persons/resource/persons216075

Schreiyäck,  M
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192600

Bause,  J
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84145

Pohmann,  R
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Schreiyäck, M., Bause, J., Scheffler, K., & Pohmann, R. (2019). Dual Coil Continuous ASL of the human brain at 9.4 T. Poster presented at 27th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2019), Montréal, QC, Canada.


引用: https://hdl.handle.net/21.11116/0000-0003-9707-B
要旨
Arterial Spin Labeling (ASL) is expected to profit highly from ultra high magnetic fields because of the high SNR and the long longitudinal relaxation time. Here we show first images from dual coil continuous ASL measurements in the human brain at 9.4 T. A separate transmit channel was established to feed two small labeling coils placed at the neck. A power limiter was used to ensure subject safety. First images show strong perfusion contrast and high SNR.