日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Interface between graphene and liquid Cu from molecular dynamics simulations

MPS-Authors
/persons/resource/persons22000

Reuter,  Karsten
Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München;
Theory, Fritz Haber Institute, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

5.0020126.pdf
(出版社版), 3MB

付随資料 (公開)
There is no public supplementary material available
引用

Cingolani, J. S., Deimel, M., Köcher, S., Scheurer, C., Reuter, K., & Andersen, M. (2020). Interface between graphene and liquid Cu from molecular dynamics simulations. The Journal of Chemical Physics, 153(7):. doi:10.1063/5.0020126.


引用: https://hdl.handle.net/21.11116/0000-0007-0823-9
要旨
Controllable synthesis of defect-free graphene is crucial for applications since the properties of graphene are highly sensitive to any deviations from the crystalline lattice. We focus here on the emerging use of liquid Cu catalysts, which have high potential for fast and efficient industrial-scale production of high-quality graphene. The interface between graphene and liquid Cu is studied using force field and ab initio molecular dynamics, revealing a complete or partial embedding of finite-sized flakes. By analyzing flakes of different sizes, we find that the size-dependence of the embedding can be rationalized based on the energy cost of embedding vs bending the graphene flake. The embedding itself is driven by the formation of covalent bonds between the under-coordinated edge C atoms and the liquid Cu surface, which is accompanied by a significant charge transfer. In contrast, the central flake atoms are located around or slightly above 3 Å from the liquid Cu surface and exhibit weak van der Waals–bonding and much lower charge transfer. The structural and electronic properties of the embedded state revealed in our work provide the atomic-scale information needed to develop effective models to explain the special growth observed in experiments where various interesting phenomena such as flake self-assembly and rotational alignment, high growth speeds, and low defect densities in the final graphene product have been observed.