日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Polarization-Modulated Angle-Resolved Photoemission Spectroscopy: Toward Circular Dichroism without Circular Photons and Bloch Wave-function Reconstruction

MPS-Authors
/persons/resource/persons227631

Pincelli,  Tommaso
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons206871

Dong,  Shuo
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22250

Wolf,  Martin
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons104701

Rettig,  Laurenz
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21497

Ernstorfer,  Ralph
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Institut für Optik und Atomare Physik, Technische Universität Berlin;

/persons/resource/persons227651

Beaulieu,  Samuel
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Université de Bordeaux - CNRS - CEA, CELIA;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

PhysRevX.12.011019.pdf
(出版社版), 3MB

付随資料 (公開)
There is no public supplementary material available
引用

Schüler, M., Pincelli, T., Dong, S., Devereaux, T. P., Wolf, M., Rettig, L., Ernstorfer, R., & Beaulieu, S. (2022). Polarization-Modulated Angle-Resolved Photoemission Spectroscopy: Toward Circular Dichroism without Circular Photons and Bloch Wave-function Reconstruction. Physical Review X, 12(1):. doi:10.1103/PhysRevX.12.011019.


引用: https://hdl.handle.net/21.11116/0000-0008-561E-7
要旨
Angle-resolved spectroscopy is the most powerful technique to investigate the
electronic band structure of crystalline solids. To completely characterize the electronic structure of topological materials, one needs to go beyond band structure mapping and probe the texture of the Bloch wavefunction in momentum-space, associated with Berry curvature and topological invariants. Because phase information is lost in the process of measuring photoemission intensities, retrieving the complex-valued Bloch wavefunction from photoemission data has yet remained elusive. In this Article, we introduce a novel measurement methodology and observable in extreme ultraviolet angle-resolved photoemission spectroscopy, based on continuous modulation of the ionizing radiation polarization axis. By tracking the energy- and momentum-resolved amplitude and phase of the photoemission modulation upon polarization variation, we reconstruct the Bloch wavefunction of prototypical
semiconducting transition metal dichalcogenide 2H-WSe2 with minimal theory input. This novel experimental scheme, which is articulated around the manipulation of the photoionization transition dipole matrix element, in combination with a simple tight-binding theory, is general and can be extended to provide insights into the Bloch wavefunction of many relevant crystalline solids.