English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Amino acid transport in brush-border-membrane vesicles isolated from human small intestine

MPS-Authors
/persons/resource/persons259838

Lücke,  Heinrich
Department of Physiology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137691

Haase,  Winfried
Department of Physiology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons257975

Murer,  Heini
Department of Physiology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lücke, H., Haase, W., & Murer, H. (1977). Amino acid transport in brush-border-membrane vesicles isolated from human small intestine. Biochemical Journal, 168(3), 529-532. doi:10.1042/bj1680529.


Cite as: https://hdl.handle.net/21.11116/0000-0008-6E11-A
Abstract
Uptake of L-alanine and L-phenylalanine by purified bursh-border-membrane vesicles isolated from human small intestine was investigated by using a rapid-filtration technique. L-Alanine entered the same osmotically reactive space as D-glucose, indicating that transport into the vesicle rather than binding to the membranes was being observed. The uptake rate for L-alanine was higher in the presence of a Na+ gradient than in the presence of a K+ gradient. In the presence of a Na+ gradient, the lipophilic anion SCN+ caused an increase in L-alanine transport, whereas the nearly impermeant SO42- anion decreased the uptake of L-alanine compared with its uptake in the presence of Cl-. The uptake of L-phenylalanine into the brush-border-membrane vesicle was also stimulated by Na+. The results indicate co-transport of Na+ and neutral amino acids inthe human intestinal brush-border membrane.