Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Multiparticle collision dynamics simulations of a squirmer in a nematic fluid

MPG-Autoren
/persons/resource/persons223664

Mandal,  Shubhadeep
Group Collective phenomena far from equilibrium, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173589

Mazza,  Marco
Group Non-equilibrium soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mandal, S., & Mazza, M. (2021). Multiparticle collision dynamics simulations of a squirmer in a nematic fluid. The European Physical Journal E, 44: 64. doi:10.1140/epje/s10189-021-00072-3.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-7C3A-D
Zusammenfassung
We study the dynamics of a squirmer in a nematic liquid crystal using the multiparticle collision dynamics (MPCD) method. A recently developed nematic MPCD method [Phys. Rev. E 99, 063319 (2019)] which employs a tensor order parameter to describe the spatial and temporal variations of the nematic order is used to simulate the suspending anisotropic fluid. Considering both nematodynamic effects (anisotropic viscosity and elasticity) and thermal fluctuations, in the present study, we couple the nematic MPCD algorithm with a molecular dynamics (MD) scheme for the squirmer. A unique feature of the proposed method is that the nematic order, the fluid, and the squirmer are all represented in a particle-based framework. To test the applicability of this nematic MPCD-MD method, we simulate the dynamics of a spherical squirmer with homeotropic surface anchoring conditions in a bulk domain. The importance of anisotropic viscosity and elasticity on the squirmer’s speed and orientation is studied for different values of self-propulsion strength and squirmer type (pusher, puller or neutral). In sharp contrast to Newtonian fluids, the speed of the squirmer in a nematic fluid depends on the squirmer type. Interestingly, the speed of a strong pusher is smaller in the nematic fluid than for the Newtonian case. The orientational dynamics of the squirmer in the nematic fluid also shows a non-trivial dependence on the squirmer type. Our results compare well with existing experimental and numerical data. The full particle-based framework could be easily extended to model the dynamics of multiple squirmers in anisotropic fluids.