Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Reliability of perceptual-cognitive skills in a complex, laboratory-based team-sport setting

MPG-Autoren
/persons/resource/persons138117

Lehmann,  Nico
Department of Sport Science, Faculty of Human Sciences, Otto von Guericke University Magdeburg, Germany;
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Hinz_2021.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hinz, M., Lehmann, N., Melcher, K., Aye, N., Radić, V., Wagner, H., et al. (2021). Reliability of perceptual-cognitive skills in a complex, laboratory-based team-sport setting. Applied Sciences, 11(11): 5203. doi:10.3390/app11115203.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-DE49-D
Zusammenfassung
The temporal occlusion paradigm is often used in anticipation and decision-making research in sports. Although it is considered as a valid measurement tool, evidence of its reproducibility is lacking but required for future cross-sectional and repeated-measures designs. Moreover, only a few studies on decision making in real-world environments exist. Here, we aimed at (a) implementing a temporal occlusion test with multi-dimensional motor response characteristics, and (b) assessing intra- and inter-session item reliability. Temporally occluded videos of attack sequences in a team handball scenario were created and combined with the SpeedCourt® contact plate system. Participants were instructed to perform pre-specified defensive actions in response to the video stimuli presented on a life-size projection screen. The intra- and inter-session (after at least 24 h) reproducibility of subjects’ motor responses were analyzed. Significant Cohen’s (0.44–0.54) and Fleiss’ (0.33–0.51) kappa statistics revealed moderate agreement of motor responses with the majority of attack situations in both intra- and inter-session analyses. Participants made faster choices with more visual information about the opponents’ unfolding action. Our findings indicate reliable decisions in a complex, near-game test environment for team handball players. The test provides a foundation for future temporal occlusion studies, including recommendations for new explanatory approaches in cognition research.