English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Single-Cell Transcriptomics Supports a Role of CHD8 in Autism

MPS-Authors
/persons/resource/persons80370

Hoffmann,  Anke
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

/persons/resource/persons80535

Spengler,  Dietmar
Dept. Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hoffmann, A., & Spengler, D. (2021). Single-Cell Transcriptomics Supports a Role of CHD8 in Autism. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 22(6): 3261. doi:10.3390/ijms22063261.


Cite as: https://hdl.handle.net/21.11116/0000-0008-E038-C
Abstract
Chromodomain helicase domain 8 (CHD8) is one of the most frequently mutated and most penetrant genes in the autism spectrum disorder (ASD). Individuals with CHD8 mutations show leading symptoms of autism, macrocephaly, and facial dysmorphisms. The molecular and cellular mechanisms underpinning the early onset and development of these symptoms are still poorly understood and prevent timely and more efficient therapies of patients. Progress in this area will require an understanding of "when, why and how cells deviate from their normal trajectories". High-throughput single-cell RNA sequencing (sc-RNAseq) directly quantifies information-bearing RNA molecules that enact each cell's biological identity. Here, we discuss recent insights from sc-RNAseq of CRISPR/Cas9-editing of Chd8/CHD8 during mouse neocorticogenesis and human cerebral organoids. Given that the deregulation of the balance between excitation and inhibition (E/I balance) in cortical and subcortical circuits is thought to represent a major etiopathogenetic mechanism in ASD, we focus on the question of whether, and to what degree, results from current sc-RNAseq studies support this hypothesis. Beyond that, we discuss the pros and cons of these approaches and further steps to be taken to harvest the full potential of these transformative techniques.