Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Effect of elastic instability on mobilization of capillary entrapments

MPG-Autoren
/persons/resource/persons267417

Shakeri,  Pegah
Group Geometry of Fluid Interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons199925

Jung,  Michael
Group Geometry of Fluid Interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons121851

Seemann,  Ralf
Group Geometry of Fluid Interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shakeri, P., Jung, M., & Seemann, R. (2021). Effect of elastic instability on mobilization of capillary entrapments. Physics of Fluids, 33: 113102. doi:10.1063/5.0071556.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-800F-6
Zusammenfassung
The flow of viscoelastic polymer solutions and their use as displacing agents in porous media are important for industrial applications, such
as enhanced oil recovery and soil remediation. The complexity of flow and high elasticity of conventionally used viscoelastic polymer
solutions can lead to purely elastic instability in porous media. In this study, we investigate the impact of this instability on displacing
capillary entrapments at low Reynolds numbers using a microfluidic approach. Our unique design consists of a single-capillary entrapment
connected to two symmetric serpentine channels. This design excludes the effect of viscous forces and enables a direct focus on displacement
processes driven solely by elastic forces. After the onset of purely elastic instability, an unstable base flow is observed in the serpentine channels.
We discuss that the pressure fluctuations caused by this unstable flow create an instantaneous non-equilibrium state between the two
ends of the capillary entrapment. This provides the driving pressure to overcome the capillary threshold pressure and eventually displace the
entrapped oil. In our geometry, we observe that the displacement coincides with the emergence of a fully developed elastic turbulent state.