English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The menstrual cycle modulates whole-brain turbulent dynamics

MPS-Authors
/persons/resource/persons208989

Deco,  Gustavo
Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain;
Catalan Institution for Research and Advanced Studies (ICREA), University Pompeu Fabra, Barcelona, Spain;
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

DeFilippi_2021.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

De Filippi, E., Uribe, C., Avila-Varela, D. S., Martínez-Molina, N., Gashaj, V., Pritschet, L., et al. (2021). The menstrual cycle modulates whole-brain turbulent dynamics. Frontiers in Neuroscience, 15: 753820. doi:10.3389/fnins.2021.753820.


Cite as: https://hdl.handle.net/21.11116/0000-0009-E5B0-D
Abstract
Brain dynamics have recently been shown to be modulated by rhythmic changes in female sex hormone concentrations across an entire menstrual cycle. However, many questions remain regarding the specific differences in information processing across spacetime between the two main follicular and luteal phases in the menstrual cycle. Using a novel turbulent dynamic framework, we studied whole-brain information processing across spacetime scales (i.e., across long and short distances in the brain) in two open-source, dense-sampled resting-state datasets. A healthy naturally cycling woman in her early twenties was scanned over 30 consecutive days during a naturally occurring menstrual cycle and under a hormonal contraceptive regime. Our results indicated that the luteal phase is characterized by significantly higher information transmission across spatial scales than the follicular phase. Furthermore, we found significant differences in turbulence levels between the two phases in brain regions belonging to the default mode, salience/ventral attention, somatomotor, control, and dorsal attention networks. Finally, we found that changes in estradiol and progesterone concentrations modulate whole-brain turbulent dynamics in long distances. In contrast, we reported no significant differences in information processing measures between the active and placebo phases in the hormonal contraceptive study. Overall, the results demonstrate that the turbulence framework is able to capture differences in whole-brain turbulent dynamics related to ovarian hormones and menstrual cycle stages.