日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Large Room Temperature Anomalous Transverse Thermoelectric Effect in Kagome Antiferromagnet YMn6Sn6

MPS-Authors
/persons/resource/persons268094

Roychowdhury,  Subhajit
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons277477

Samanta,  Kartik
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons223669

Noky,  Jonathan
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126847

Shekhar,  Chandra
Chandra Shekhar, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

G. Vergniory,  Maia
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  Claudia
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Roychowdhury, S., Ochs, A. M., Guin, S. N., Samanta, K., Noky, J., Shekhar, C., G. Vergniory, M., Goldberger, J. E., & Felser, C. (2022). Large Room Temperature Anomalous Transverse Thermoelectric Effect in Kagome Antiferromagnet YMn6Sn6. Advanced Materials, 34(40):, pp. 1-8. doi:10.1002/adma.202201350.


引用: https://hdl.handle.net/21.11116/0000-000A-EAFE-1
要旨
Abstract Kagome magnets possess several novel nontrivial topological features owing to the strong correlation between topology and magnetism that extends to their applications in the field of thermoelectricity. Conventional thermoelectric (TE) devices use the Seebeck effect to convert heat into electrical energy. In contrast, transverse thermoelectric devices based on the Nernst effect are attracting recent attention due to their unique transverse geometry, which uses a single material to eliminate the need for a multitude of electrical connections compared to conventional TE devices. Here, a large anomalous transverse thermoelectric effect of ≈2 µV K?1 at room temperature in a kagome antiferromagnet YMn6Sn6 single crystal is obtained. The obtained value is larger than that of state-of-the-art canted antiferromagnetic (AFM) materials and comparable with ferromagnetic systems. The large anomalous Nernst effect (ANE) can be attributed to the net Berry curvature near the Fermi level. Furthermore, the ANE of the AFM YMn6Sn6 exceeds the magnetization scaling relationship of conventional ferromagnets. The results clearly illustrate that AFM material YMn6Sn6 is an ideal topological material for room-temperature transverse thermoelectric applications.