English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

ATP-dependent proteolysis in mitochondria. m-AAA protease and PIM1 protease exert overlapping substrate specificities and cooperate with the mtHsp70 system

MPS-Authors
/persons/resource/persons278030

Langer,  T.
Department Langer - Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Savel'ev, A. S., Novikova, L. A., Kovaleva, I. E., Luzikov, V. N., Neupert, W., & Langer, T. (1998). ATP-dependent proteolysis in mitochondria. m-AAA protease and PIM1 protease exert overlapping substrate specificities and cooperate with the mtHsp70 system. J Biol Chem, 273(32), 20596-602.


Cite as: https://hdl.handle.net/21.11116/0000-000B-700B-B
Abstract
To analyze protein degradation in mitochondria and the role of molecular chaperone proteins in this process, bovine apocytochrome P450scc was employed as a model protein. When imported into isolated yeast mitochondria, P450scc was mislocalized to the matrix and rapidly degraded. This proteolytic breakdown was mediated by the ATP-dependent PIM1 protease, a Lon-like protease in the mitochondrial matrix, in cooperation with the mtHsp70 system. In addition, a derivative of P450scc was studied to which a heterologous transmembrane region was fused at the amino terminus. This protein became anchored to the inner membrane upon import and was degraded by the membrane-embedded, ATP-dependent m-AAA protease. Again, degradation depended on the mtHsp70 system; it was inhibited at non-permissive temperature in mitochondria carrying temperature-sensitive mutant forms of Ssc1p, Mdj1p, or Mge1p. These results demonstrate overlapping substrate specificities of PIM1 and the m-AAA protease, and they assign a central role to the mtHsp70 system during the degradation of misfolded polypeptides by both proteases.