English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Microbial detoxification of mycotoxin deoxynivalenol

MPS-Authors
/persons/resource/persons289928

Völkl,  A
Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Völkl, A., Vogler, B., Schollenberger, M., & Karlovsky, P. (2004). Microbial detoxification of mycotoxin deoxynivalenol. Journal of Basic Microbiology, 44(2), 147-156. doi:10.1002/jobm.200310353.


Cite as: https://hdl.handle.net/21.11116/0000-000D-3BCB-D
Abstract
Deoxynivalenol (DON) is a trichothecene secondary metabolite produced by Fusarium species infecting cereal crops. As a mycotoxin, DON causes losses in livestock production and poses a health risk to humans consuming contaminated cereal products. DON also acts as a virulence factor, facilitating the colonization of host plants by Fusarium spp. Enzymatic detoxification of mycotoxins in feed additives and genetically modified crops is a promising approach for the reduction of mycotoxin contamination of feeds and food. A prerequisite for the development of biotechnological strategies for DON detoxification is the availability of genes encoding suitable enzymatic activities. With the goal of isolating microbial cultures that can be used as a source of such activities, we screened 1285 microbial cultures from farmland soil, cereal grains, insects and other sources for DON transformation under aerobic conditions. One mixed culture transformed DON into two chromatographically separable products. The main product of the transformation was purified and its structure was elucidated by mass spectroscopy, (1)H-NMR, (13)C-NMR and proton-proton and carbon-proton correlated NMR spectroscopy. The structure of this product was determined to be 3-keto-4-deoxynivalenol. The DON-transforming mixed culture survived and retained its transforming activity during a starvation period of six months at 20 degrees C. Transformation of DON was suppressed by low concentrations of glucose and high concentrations of tryptone and yeast extract. Cell-free supernatants obtained either by filtration through a 0.22 microm membrane filter or by centrifugation did not exert DON-transforming activity. Trichothecenes 15-acetyl-DON, 3-acetyl-DON and fusarenon-X were also transformed.