English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Preprint

Impact of nuclear effects on the ultrafast dynamics of an organic/inorganic mixed-dimensional interface

MPS-Authors
/persons/resource/persons227647

Fidanyan,  K.
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons21421

Rossi,  M.
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2311.01776.pdf
(Preprint), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Jacobs, M., Fidanyan, K., Rossi, M., & Cocchi, C. (2023). Impact of nuclear effects on the ultrafast dynamics of an organic/inorganic mixed-dimensional interface.


Cite as: https://hdl.handle.net/21.11116/0000-000D-DF11-5
Abstract
Electron dynamics at weakly bound interfaces of organic/inorganic materials are easily influenced by large-amplitude nuclear motion. In this work, we investigate the effects of different approximations to the equilibrium nuclear distributions on the ultrafast charge-carrier dynamics of a laser-excited hybrid organic/inorganic interface. By considering a prototypical system consisting of pyrene physisorbed on a MoSe2 monolayer, we analyze linear absorption spectra, electronic density currents, and charge-transfer dynamics induced by a femtosecond pulse in resonance with the frontier-orbital transition in the molecule. The calculations are based on ab initio molecular dynamics with classical and quantum thermostats, followed by time-dependent density-functional theory coupled to multi-trajectory Ehrenfest dynamics. We impinge the system with a femtosecond (fs) pulse of a few hundred GW/cm2 intensity and propagate it for 100 fs. We find that the optical spectrum is insensitive to different nuclear distributions in the energy range dominated by the excitations localized on the monolayer. The pyrene resonance, in contrast, shows a small blue shift at finite temperatures, hinting at an electron-phonon-induced vibrational-level renormalization. The electronic current density following the excitation is affected by classical and quantum nuclear sampling through suppression of beating patterns and faster decay times. Interestingly, finite temperature leads to a longer stability of the ultrafast charge transfer after excitation. Overall, the results show that the ultrafast charge-carrier dynamics are dominated by electronic rather than by nuclear effects at the field strengths and time scales considered in this work.