日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Unraveling the Evolution of Auxin Signaling

MPS-Authors
/persons/resource/persons274259

De Smet,  I       
Department Cell Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272576

Lau,  S
Department Cell Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271466

Jürgens,  G       
Department Cell Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

De Smet, I., Voss, U., Lau, S., Wilson, M., Shao, N., Timme, R., Swarup, R., Kerr, I., Hodgman, C., Bock, R., Bennett, M., Jürgens, G., & Beeckman, T. (2011). Unraveling the Evolution of Auxin Signaling. Plant Physiology, 155(1), 209-221. doi:10.1104/pp.110.168161.


引用: https://hdl.handle.net/21.11116/0000-000D-FB4D-3
要旨
Auxin signaling is central to plant growth and development, yet hardly anything is known about its evolutionary origin. While the presence of key players in auxin signaling has been analyzed in various land plant species, similar analyses in the green algal lineages are lacking. Here, we survey the key players in auxin biology in the available genomes of Chlorophyta species. We found that the genetic potential for auxin biosynthesis and AUXIN1 (AUX1)/LIKE AUX1- and P-GLYCOPROTEIN/ATP-BINDING CASSETTE subfamily B-dependent transport is already present in several single-celled and colony-forming Chlorophyta species. In addition, our analysis of expressed sequence tag libraries from Coleochaete orbicularis and Spirogyra pratensis, green algae of the Streptophyta clade that are evolutionarily closer to the land plants than those of the Chlorophyta clade, revealed the presence of partial AUXIN RESPONSE FACTORs and/or AUXIN/INDOLE-3-ACETIC ACID proteins (the key factors in auxin signaling) and PIN-FORMED-like proteins (the best-characterized auxin-efflux carriers). While the identification of these possible AUXIN RESPONSE FACTOR- and AUXIN/INDOLE-3-ACETIC ACID precursors and putative PIN-FORMED orthologs calls for a deeper investigation of their evolution after sequencing more intermediate genomes, it emphasizes that the canonical auxin response machinery and auxin transport mechanisms were, at least in part, already present before plants "moved" to land habitats.