Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Optomechanical realization of the bosonic Kitaev chain

MPG-Autoren

Wanjura,  Clara C.
Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)

Bildschirmfoto 2024-04-29 um 13.45.56.png
(Ergänzendes Material), 66KB

Zitation

Slim, J. J., Wanjura, C. C., Brunelli, M., del Pino, J., Nunnenkamp, A., & Verhagen, E. (2024). Optomechanical realization of the bosonic Kitaev chain. Nature, 627, 767-771. doi:10.1038/s41586-024-07174-w.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-3A14-A
Zusammenfassung
The fermionic Kitaev chain is a canonical model featuring topological Majorana zero modes. We report the experimental realization of its bosonic analogue in a nanooptomechanical network, in which the parametric interactions induce beam-splitter coupling and two-mode squeezing among the nanomechanical modes, analogous to hopping and p-wave pairing in the fermionic case, respectively. This specific structure gives rise to a set of extraordinary phenomena in the bosonic dynamics and transport. We observe quadrature-dependent chiral amplification, exponential scaling of the gain with system size and strong sensitivity to boundary conditions. All these are linked to the unique non-Hermitian topological nature of the bosonic Kitaev chain.
We probe the topological phase transition and uncover a rich dynamical phase diagram by controlling interaction phases and amplitudes. Finally, we present an experimental demonstration of an exponentially enhanced response to a small perturbation. These results represent the demonstration of a new synthetic phase of matter whose bosonic dynamics do not have fermionic parallels, and we have established a powerful system for studying non-Hermitian topology and its applications for signal manipulation and sensing.